Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation

نویسندگان

  • Xunhai Zheng
  • Lars C. Pedersen
  • Scott A. Gabel
  • Geoffrey A. Mueller
  • Matthew J. Cuneo
  • Eugene F. DeRose
  • Juno M. Krahn
  • Robert E. London
چکیده

HIV-1 reverse transcriptase (RT), a critical enzyme of the HIV life cycle and an important drug target, undergoes complex and largely uncharacterized conformational rearrangements that underlie its asymmetric folding, dimerization and subunit-selective ribonuclease H domain (RH) proteolysis. In the present article we have used a combination of NMR spectroscopy, small angle X-ray scattering and X-ray crystallography to characterize the p51 and p66 monomers and the conformational maturation of the p66/p66' homodimer. The p66 monomer exists as a loosely structured molecule in which the fingers/palm/connection, thumb and RH substructures are connected by flexible (disordered) linking segments. The initially observed homodimer is asymmetric and includes two fully folded RH domains, while exhibiting other conformational features similar to that of the RT heterodimer. The RH' domain of the p66' subunit undergoes selective unfolding with time constant ∼6.5 h, consistent with destabilization due to residue transfer to the polymerase' domain on the p66' subunit. A simultaneous increase in the intensity of resonances near the random coil positions is characterized by a similar time constant. Consistent with the residue transfer hypothesis, a construct of the isolated RH domain lacking the two N-terminal residues is shown to exhibit reduced stability. These results demonstrate that RH' unfolding is coupled to homodimer formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric conformational maturation of HIV-1 reverse transcriptase

HIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the sl...

متن کامل

Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability

Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)-a critical enzyme of the viral life cycle-undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH ...

متن کامل

HIV-1 reverse transcriptase pausing at bulky 2' adducts is relieved by deletion of the RNase H domain.

Pausing by reverse transcriptase (RT) during retroviral replication increases the frequency of homologous strand transfer, nucleotide misincorporation, and non-templated nucleotide addition. Pausing frequency increases at sites of DNA damage or upon incorporation of nucleotide analogs with steric barriers. These lesions thus likely stimulate mutations leading to resistant viral strains that esc...

متن کامل

Comparison of HBV ribonuclease H domain in naïve and drug resistant patients.

Nucleotide or nucleoside analog (NA) drug resistance has increasingly become a problem in HBV treatment. Due to the similarity between HBV polymerase and HIV-1 reverse transcriptase, knowledge obtained from HIV research might be applied to the treatment of HBV infection. A previous study has shown that HIV-1 ribonuclease H (RNase H) mutation may contribute to nucleoside reverse transcriptase in...

متن کامل

The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit.

Reverse transcriptases (RTs) exhibit DNA polymerase and ribonuclease H (RNase H) activities. The RTs of human immunodeficiency viruses type 1 and type 2 (HIV-1 and HIV-2) are composed of two subunits, both sharing the same N-terminus (which encompasses the DNA polymerase domain). The smaller subunit lacks the C-terminal segment of the larger one, which contains the RNase H domain. The DNA polym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014