Recognizing Scene Categories of Historical Postcards
نویسندگان
چکیده
The recognition of visual scene categories is a challenging issue in computer vision. It has many applications like organizing and tagging private or public photo collections. While most approaches are focused on web image collections, some of the largest unorganized image collections are historical images from archives and museums. In this paper the problem of recognizing categories in historical images is considered. More specifically, a new dataset is presented that addresses the analysis of a challenging collection of postcards from the period of World War I delivered by the German military postal service. The categorization of these postcards is of greater interest for historians in order to gain insights about the society during these years. For computer vision research the postcards pose various new challenges such as high degradations, varying visual domains like sketches, photographs or colorization and incorrect orientations due to an image in the image problem. The incorrect orientation is addressed by a pre-processing step that classifies the images into portrait or landscapes. In order to cope with the different visual domains an ensemble that incorporates global feature representations and features that are derived from detection results is used. The experiments on a development set and a large unexplored test set show that the proposed methods allow for improving the recognition on the historical postcards compared to a Bag-of-Features based scene categorization.
منابع مشابه
Local , Semi - Local and Global Models for Texture , Object and Scene Recognition
This dissertation addresses the problems of recognizing textures, objects, and scenes in photographs. We present approaches to these recognition tasks that combine salient local image features with spatial relations and effective discriminative learning techniques. First, we introduce a bag of features image model for recognizing textured surfaces under a wide range of transformations, includin...
متن کاملTMS to the Lateral Occipital Cortex Disrupts Object Processing but Facilitates Scene Processing
The study of brain-damaged patients and advancements in neuroimaging have lead to the discovery of discrete brain regions that process visual image categories, such as objects and scenes. However, how these visual image categories interact remains unclear. For example, is scene perception simply an extension of object perception, or can global scene "gist" be processed independently of its comp...
متن کاملVisual scenes are categorized by function.
How do we know that a kitchen is a kitchen by looking? Traditional models posit that scene categorization is achieved through recognizing necessary and sufficient features and objects, yet there is little consensus about what these may be. However, scene categories should reflect how we use visual information. Therefore, we test the hypothesis that scene categories reflect functions, or the pos...
متن کاملHistorical Provocations : Postal Presence , Intimate Absence and Public Privacy
This paper traces the production of presence across nineteenth century postal networks of communication in order to make some preliminary remarks, some historical provocations, about twenty first century platforms of social media. It argues that many of the questions facing the field of contemporary presence research are best approached within their socio-technical historical settings. The writ...
متن کاملScene Classification Using Pyramid Histogram of Multi-Scale Block Local Binary Pattern
Pyramid Histogram of Multi-scale Block Local Binary Pattern (PH-MBLBP) descriptor for recognizing scene categories, is presented in this paper. We show that scene categorization, especially for indoor and outdoor environments, requires its visual descriptor to process properties that are different from other vision domains (e.g., SIFT descriptor used for object categorization). Our proposed PH-...
متن کامل