The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions

نویسندگان

  • Aikaterini Nanou
  • Chrisavgi Toumpeki
  • Matthieu D. Lavigne
  • Vassiliki Lazou
  • Jeroen Demmers
  • Triantafillos Paparountas
  • Dimitris Thanos
  • Eleni Katsantoni
چکیده

STAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here, LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a GAS motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Groups of genes bound weaker by STAT5a and stronger by LSD1/HDAC3 showed an absence of the GAS motif, and were differentially regulated based on their genomic binding localization and binding affinities. These genes exhibited increased binding frequency in promoters, and in conjunction with the absence of GAS sites, the data indicate a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein-protein interactions, genomic binding localization/affinity and motifs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.

Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017