The Francisella Tularensis Proteome and its Recognition by Antibodies
نویسندگان
چکیده
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
منابع مشابه
Francisella tularensis LVS Surface and Membrane Proteins as Targets of Effective Post-Exposure Immunization for Tularemia
Francisella tularensis causes disease (tularemia) in a large number of mammals, including man. We previously demonstrated enhanced efficacy of conventional antibiotic therapy for tularemia by postexposure passive transfer of immune sera developed against a F. tularensis LVS membrane protein fraction (MPF). However, the protein composition of this immunogenic fraction was not defined. Proteomic ...
متن کاملTowards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays.
Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in...
متن کاملInnate Immune Recognition of Francisella Tularensis: Activation of Type-I Interferons and the Inflammasome
Francisella tularensis is an intracellular pathogen that can cause severe disease in a wide range of mammalian hosts. Primarily residing in host macrophages, F. tularensis escapes phagosomal degradation, and replicates in the macrophage cytosol. The macrophage uses a series of pattern recognition receptors to detect conserved microbial molecules from invading pathogens, and initiates an appropr...
متن کاملFrancisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy.
Francisella tularensis is the causative agent of tularemia and a potential agent of biowarfare. As an easily transmissible infectious agent, rapid detection and treatment are necessary to provide a positive clinical outcome. As an agent of biowarfare, there is an additional need to prevent infection. We made monoclonal antibodies to the F. tularensis subsp. holarctica live vaccine strain (F. tu...
متن کاملProteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC.
Francisella tularensis is a highly virulent, facultative intracellular pathogen that causes tularemia in humans and animals. Although it is one of the most infectious bacterial pathogens, little is known about its virulence mechanisms. In this study, the response of F. tularensis live vaccine strain to iron depletion, which simulates the environment within the host, was investigated. In order t...
متن کامل