Conserved thermodynamic contributions of backbone hydrogen bonds in a protein fold.

نویسندگان

  • Min Wang
  • Thomas E Wales
  • Michael C Fitzgerald
چکیده

Backbone-backbone hydrogen-bonding interactions are a ubiquitous and highly conserved structural feature of proteins that adopt the same fold (i.e., have the same overall backbone topology). This work addresses the question of whether or not this structural conservation is also reflected as a thermodynamic conservation. Reported here is a comparative thermodynamic analysis of backbone hydrogen bonds in two proteins that adopt the same fold but are unrelated at the primary amino acid sequence level. With amide-to-ester bond mutations introduced by total chemical synthesis methods, the thermodynamic consequences of backbone-backbone hydrogen-bond deletions at five different structurally equivalent positions throughout the beta-alpha-alpha fold of Arc repressor and CopG were assessed. The ester bond-containing analogues all folded into native-like three-dimensional structures that were destabilized from 2.5 to 6.0 kcal/(mol dimer) compared with wild-type controls. Remarkably, the five paired analogues with amide-to-ester bond mutations at structurally equivalent positions were destabilized to exactly the same degree, regardless of the degree to which the mutation site was buried in the structure. The results are interpreted as evidence that the thermodynamics of backbone-backbone hydrogen-bonding interactions in a protein fold are conserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family

BACKGROUND Gram-negative bacteria use periplasmic-binding proteins (bPBP) to transport nutrients through the periplasm. Despite immense diversity within the recognized substrates, all members of the family share a common fold that includes two domains that are separated by a conserved hinge. The hinge allows the protein to cycle between open (apo) and closed (ligated) conformations. Conformatio...

متن کامل

Structure and energetics of the hydrogen-bonded backbone in protein folding.

We seek to understand the link between protein thermodynamics and protein structure in molecular detail. A classical approach to this problem involves assessing changes in protein stability resulting from added cosolvents. Under any given conditions, protein molecules in aqueous buffer are in equilibrium between unfolded and folded states, U(nfolded) <==> N(ative). Addition of organic osmolytes...

متن کامل

Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases.

The protein kinase catalytic domain contains several conserved residues of unknown functions. Here, using a combination of computational and experimental approaches, we show that the function of some of these residues is to maintain the backbone geometry of the active site in a strained conformation. Specifically, we find that the backbone geometry of the catalytically important HRD motif devia...

متن کامل

Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations.

PDZ domains are scaffolding modules in protein-protein interactions that mediate numerous physiological functions by interacting canonically with the C-terminus or non-canonically with an internal motif of protein ligands. A conserved carboxylate-binding site in the PDZ domain facilitates binding via backbone hydrogen bonds; however, little is known about the role of these hydrogen bonds due to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 8  شماره 

صفحات  -

تاریخ انتشار 2006