Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje.
نویسندگان
چکیده
Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns--they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.
منابع مشابه
Crystallization and preliminary X-ray diffraction studies of Hje, a HolliDay junction resolving enzyme from Sulfolobus solfataricus.
HolliDay junction endonuclease (Hje) from Sulfolobus solfataricus is a resolving enzyme involved in cleaving specific sites on either side of recombinant four-way HolliDay junctions. The HJE gene from S. solfataricus was cloned from genomic DNA into the pET19b Escherichia coli expression vector and recombinant protein was expressed to high levels. Hje was purified using heat treatment, cation e...
متن کاملHolliday junction resolvase in Schizosaccharomyces pombe has identical endonuclease activity to the CCE1 homologue YDC2.
A novel Holliday junction resolving activity has been identified in fractionated cell extracts of the fission yeast Schizosaccharomyces pombe . The enzyme catalyses endonucleolytic cleavage of Holliday junction-containing chi DNA and synthetic four-way DNA junctions. The activity cuts with high specificity a synthetic four-way junction containing a 12 bp core of homologous sequences but has no ...
متن کاملBiochemical Characterization of a Structure-Specific Resolving Enzyme from Sulfolobus islandicus Rod-Shaped Virus 2
Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C-80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleav...
متن کاملStructure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus.
The 2.15-A structure of Hjc, a Holliday junction-resolving enzyme from the archaeon Sulfolobus solfataricus, reveals extensive structural homology with a superfamily of nucleases that includes type II restriction enzymes. Hjc is a dimer with a large DNA-binding surface consisting of numerous basic residues surrounding the metal-binding residues of the active sites. Residues critical for catalys...
متن کاملCharacterization of a Holliday junction-resolving enzyme from Schizosaccharomyces pombe.
The rearrangement and repair of DNA by homologous recombination involves the creation of Holliday junctions, which are cleaved by a class of junction-specific endonucleases to generate recombinant duplex DNA products. Only two cellular junction-resolving enzymes have been identified to date: RuvC in eubacteria and CCE1 from Saccharomyces cerevisiae mitochondria. We have identified a protein fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 18 شماره
صفحات -
تاریخ انتشار 2004