Neurocytoma is a tumor of adult neuronal progenitor cells.
نویسندگان
چکیده
Central neurocytoma (CN) is a rare periventricular tumor, whose derivation, lineage potential, and molecular regulation have been mostly unexplored. We noted that CN cells exhibited an antigenic profile typical of neuronal progenitor cells in vivo, yet in vitro generated neurospheres, divided in response to bFGF (basic fibroblast growth factor), activated the neuroepithelial enhancer of the nestin gene, and gave rise to both neuron-like cells and astrocytes. When CN gene expression was compared with that of both normal adult VZ (ventricular zone) and E/nestin:GFP (green fluorescent protein)-sorted native neuronal progenitors, significant overlap was noted. Marker analysis suggested that the gene expression pattern of CN was that of a proneuronal population; glial markers were conspicuously absent, suggesting that the emergence of astroglia from CN occurred only with passage. The expression pattern of CN was distinguished from that of native progenitor cells by a cohort of differentially expressed genes potentially involved in both the oncogenesis and phenotypic restriction of neurocytoma. These included both IGF2 and several components of its signaling pathway, whose sharp overexpression implicated dysregulated autocrine IGF2 signaling in CN oncogenesis. Both receptors and effectors of canonical wnt signaling, as well as GDF8 (growth differentiation factor 8), PDGF-D, and neuregulin, were differentially overexpressed by CN, suggesting that CN is characterized by the concurrent overactivation of these pathways, which may serve to drive neurocytoma expansion while restricting tumor progenitor phenotype. This strategy of comparing the gene expression of tumor cells to that of the purified native progenitors from which they derive may provide a focused approach to identifying transcripts important to stem and progenitor cell oncogenesis.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملNeurocytoma arising from a mature ovary teratoma: a case report
Central neurocytoma/extraventricular neurocytoma is a central nervous system (CNS) tumor composed of uniform round cells with neuronal differentiation. The typical lesions of central neurocytoma/extraventricular neurocytoma are at the interventricular foramen of the lateral ventricles (central neurocytoma) or brain parenchyma (extraventricular neurocytoma). Mature teratoma is a benign germ cell...
متن کاملExtraventricular neurocytoma in the left temporal lobe: A case report and review of the literature
Central neurocytoma (CNC) often develops in the ventricular system adjacent to the interventricular foramen and septum pellucidum. According to the World Health Organization, CNCs are classified as grade II tumors, and in recent years it has been reported that CNCs have occasionally occurred in rare areas of the central nervous system. The current study describes a rare case of CNC located in t...
متن کاملNeuronal and Mixed Neuronal-Glial Tumors of the Central Nervous System
Objective: Neuronal and Mixed Neuronal-glial Tumors of the Central Nervous System are frequently encountered in the neurosurgical practice. Differentiation of neuronal tumors from the more common glial tumors is crucial because neuronal tumors have favorable clinical outcomes and are generally curable with total surgical resection alone, whereas gliomas typically require further chemoradiothera...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 48 شماره
صفحات -
تاریخ انتشار 2006