A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat.
نویسندگان
چکیده
P2X3 and P2X2/3 receptors are highly localized on peripheral and central processes of sensory afferent nerves, and activation of these channels contributes to the pronociceptive effects of ATP. A-317491 is a novel non-nucleotide antagonist of P2X3 and P2X2/3 receptor activation. A-317491 potently blocked recombinant human and rat P2X3 and P2X2/3 receptor-mediated calcium flux (Ki = 22-92 nM) and was highly selective (IC50 >10 microM) over other P2 receptors and other neurotransmitter receptors, ion channels, and enzymes. A-317491 also blocked native P2X3 and P2X2/3 receptors in rat dorsal root ganglion neurons. Blockade of P2X3 containing channels was stereospecific because the R-enantiomer (A-317344) of A-317491 was significantly less active at P2X3 and P2X2/3 receptors. A-317491 dose-dependently (ED50 = 30 micromolkg s.c.) reduced complete Freund's adjuvant-induced thermal hyperalgesia in the rat. A-317491 was most potent (ED50 = 10-15 micromolkg s.c.) in attenuating both thermal hyperalgesia and mechanical allodynia after chronic nerve constriction injury. The R-enantiomer, A-317344, was inactive in these chronic pain models. Although active in chronic pain models, A-317491 was ineffective (ED50 >100 micromolkg s.c.) in reducing nociception in animal models of acute pain, postoperative pain, and visceral pain. The present data indicate that a potent and selective antagonist of P2X3 and P2X2/3 receptors effectively reduces both nerve injury and chronic inflammatory nociception, but P2X3 and P2X2/3 receptor activation may not be a major mediator of acute, acute inflammatory, or visceral pain.
منابع مشابه
Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats
Extracellular ATP is known to mediate synaptic transmission as a neurotransmitter or a neuromodulator via ionotropic P2X and metabotropic P2Y receptors. Several lines of evidence have suggested that ATP facilitates pain transmission at peripheral and spinal sites via the P2X receptors, in which the P2X3 subtype is considered as an important candidate for the effect. Conversely, we previously fo...
متن کاملInvolvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception
Objective(s): Oxytocin is involved in modulation of many brain-mediated functions. In the present study, we investigated the central effects of oxytocin and its receptor antagonist, atosiban on inflammatory pain. The contribution of opiate receptors was explored using non-selective and selective antagonists. Materials and Methods: The fourth ventricle of the brain of anesthetized rats was impla...
متن کاملEffect of acute caffeine administration on hyperalgesia and allodynia in a rat neuropathic pain model
Introduction: Damage to the central and peripheral nervous system causes neuropathic pain. Caffeine is a plant alkaloid and non-selective antagonist of A1, A2a and A2b adenosine receptors. It is reported that caffeine increases the threshold of pain. In this study, the effect of acute caffeine on behavioral responses of neuropathic pain was investigated. Materials and Methods: The present study...
متن کاملThe effect of chronic caffeine administration on hyperalgesia in a rat neuropathic pain model: role of nitric oxide pathway
Background: Neuropathic pain is a chronic pain caused by damage to the central nervous system and the peripheral. Caffeine is a non-selective antagonist of A1, A2a, receptors of adenosine, which has a protective effect on neuropathic pain in some doses by inhibiting A2a, A2b receptors. Considering that the nitric oxide (NO) levels are apparently effective in the parts of caffeine central effect...
متن کاملP2X3 Receptors Mediate Visceral Hypersensitivity during Acute Chemically-Induced Colitis and in the Post-Inflammatory Phase via Different Mechanisms of Sensitization
OBJECTIVES Experiments using P2X3 knock-out mice or more general P2X receptor antagonists suggest that P2X3 receptors contribute to visceral hypersensitivity. We aimed to investigate the effect of the selective P2X3 antagonist A-317491 on visceral sensitivity under physiological conditions, during acute colitis and in the post-inflammatory phase of colitis. METHODS Trinitrobenzene sulphonic-a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 26 شماره
صفحات -
تاریخ انتشار 2002