Compositions of Bottom-Up Tree Series Transformations
نویسنده
چکیده
Tree series transformations computed by bottom-up tree series transducers are called bottom-up tree series transformations. (Functional) compositions of such transformations are investigated. It turns out that bottom-up tree series transformations over commutative and א0-complete semirings are closed under left-composition with linear bottom-up tree series transformations and right-composition with boolean deterministic bottom-up tree series transformations.
منابع مشابه
Compositions of tree series transformations
Tree series transformations computed by bottom-up and top-down tree series transducers are called bottomup and top-down tree series transformations, respectively. (Functional) compositions of such transformations are investigated. It turns out that the class of bottom-up tree series transformations over a commutative and complete semiring is closed under left-composition with linear bottom-up t...
متن کاملThe Power of Tree Series Transducers of Type I and II
The power of tree series transducers of type I and II is studied for IO as well as OI tree series substitution. More precisely, it is shown that the IO tree series transformations of type I (respectively, type II) are characterized by the composition of homomorphism top-down IO tree series transformations with bottom-up (respectively, linear bottom-up) IO tree series transformations. On the oth...
متن کاملHASSE diagrams for classes of deterministic bottom-up tree-to-tree-series transformations
The relationship between classes of tree-to-tree-series and o-tree-to-tree-series transformations, which are computed by restricted deterministic bottom-up weighted tree transducers, is investigated. Essentially, these transducers are deterministic bottom-up tree series transducers, except that the former are defined over monoids whereas the latter are defined over semirings and only use the mu...
متن کاملCompositions of Extended Top-down Tree Transducers
Unfortunately, the class of transformations computed by linear extended top-down tree transducers with regular look-ahead is not closed under composition. It is shown that the class of transformations computed by certain linear bimorphisms coincides with the previously mentioned class. Moreover, it is demonstrated that every linear epsilon-free extended top-down tree transducer with regular loo...
متن کاملIncomparability Results for Classes of Polynomial Tree Series Transformations
We consider (subclasses of) polynomial bottom-up and top-down tree series transducers over a partially ordered semiring A = (A,⊕, ,0,1, ), and we compare the classes of tree-to-tree-series and o-tree-to-tree-series transformations computed by such transducers. Our main result states the following. If, for some a ∈ A with 1 a, the semiring A is a weak a-growth semiring and either (i) the semirin...
متن کامل