Source apportionment modeling of volatile organic compounds in streams.
نویسندگان
چکیده
It often is of interest to understand the relative importance of the different sources contributing to the concentration c(w) of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted c(w,1), c(w2), c(w3), etc. Like c(w), the fractions alpha1 = c(w,1)/c(w), alpha2 = c(w,2)/c(w), alpha3 = c(w,3)/c(w), etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of c(w). Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over c(w,1), c(w,2), c(w3), etc. in proportion to their corresponding alpha values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding c(w) values approaching the common water quality guideline range of 1 to 10 microg/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the alpha(j) for the compound remain unchanged over that section while c(w) decreases. A characteristic time tau(d) can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating contamination at points of interest along a stream.
منابع مشابه
Source Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries
In the Persian Gulf region, conditions are highly favorable for ozone air pollution and the region is a hot spot of photochemical smog. The vast activities in processing oil and gas play a major role in it. It was found that the elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from Hydrocarbon Processing facilities lead to substantial ozone production. South Pars...
متن کاملSource apportionment of exposure to toxic volatile organic compounds using positive matrix factorizationSource apportionment of exposure to toxic volatile organic compounds using positive matrix factorization
Data from the Total Exposure Assessment Methodology studies, conducted from 1980 to 1987 in New Jersey (NJ ) and California (CA) , and the 1990 California Indoor Exposure study were analyzed using positive matrix factorization, a receptor -oriented source apportionment model. Personal exposure and outdoor concentrations of 14 and 17 toxic volatile organic compounds (VOCs) were studied from the ...
متن کاملA Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control
The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...
متن کاملApplication of a source apportionment model in consideration of volatile organic compounds in an urban stream.
Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental toxicology and chemistry
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2006