Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.
نویسندگان
چکیده
Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.
منابع مشابه
HIGHLIGHTED TOPIC Hypoxia Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude
Vitalie Faoro, Sandrine Huez, Rebecca Vanderpool, Herman Groepenhoff, Claire de Bisschop, Jean-Benoît Martinot, Michel Lamotte, Adriana Pavelescu, Hervé Guénard, and Robert Naeije Laboratory of Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium; Department of Cardiology, Erasme University Hospital, Brussels, Belgium; Laboratory of Pathophysiology, F...
متن کاملAbnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema.
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملAlbnormal Circulatory Responses to High Altitude in Subjects with a Previous History of High - Altitude Pulmonary Edema
In five men with a history of susceptibility to high-altitude pulmonary edema (HAPE), hemodynamics and pulmonary gas exchange were measured at sea level, and again 24 hours following ascent to an altitude of 3,100 m. At sea level, all findings were essentially normal including a mean pulmonary arterial pressure (Ppa) of 13.8 + 1.9 mm Hg. None of the subjects developed clinically detectable pulm...
متن کاملExcessive gas exchange impairment during exercise in a subject with a history of bronchopulmonary dysplasia and high altitude pulmonary edema.
A 27-year-old male subject (V(O2 max)), 92% predicted) with a history of bronchopulmonary dysplasia (BPD) and a clinically documented case of high altitude pulmonary edema (HAPE) was examined at rest and during exercise. Pulmonary function testing revealed a normal forced vital capacity (FVC, 98.1% predicted) and diffusion capacity for carbon monoxide (D(L(CO)), 91.2% predicted), but significan...
متن کاملPhysiological impact of patent foramen ovale on pulmonary gas exchange, ventilatory acclimatization, and thermoregulation.
The foramen ovale, which is part of the normal fetal cardiopulmonary circulation, fails to close after birth in ∼35% of the population and represents a potential source of right-to-left shunt. Despite the prevalence of patent foramen ovale (PFO) in the general population, cardiopulmonary, exercise, thermoregulatory, and altitude physiologists may have underestimated the potential effect of this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 7 شماره
صفحات -
تاریخ انتشار 2014