A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices.

نویسندگان

  • E Jayne Wallace
  • Robert S G D'Rozario
  • Beatriz Mendoza Sanchez
  • Mark S P Sansom
چکیده

The dispersion and manipulation of carbon nanotubes (CNTs) are of great importance if we are to utilise the unique properties of CNTs in a range of biological, electrical and mechanical applications. Recently, a designed amphiphilic peptide helix termed nano-1 has been shown to solubilise CNTs in aqueous solution. Furthermore, the peptide is capable of assembling these coated tubes into fibres. We use a multiscale molecular dynamics approach to study the adsorption profile of nano-1 on a CNT surface. We find that nano-1 interacts with a CNT in a preferred orientation, such that its hydrophobic surface is in contact with the tube. The adsorption profile is unchanged upon increasing the number of peptides on the CNT. Interestingly, when few peptides are adsorbed onto the CNT surface we find that the secondary structure of the peptide is unstable. However, the helical secondary structure is stabilised upon increasing the number of peptides on the CNT surface. This study sheds light on the adsorption of peptides on CNTs, and may be exploitable to enhance the selective solubilisation and manipulation of CNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

The effect of Carbon nanotube on the most effective peptide in Alzheimer's disease in the presence of Dimethyl Sulfoxide: In Silico approach

Due to the non-polar nature of carbon nanotubes, their use in aqueous environments is limited. Therefore, auxiliary solvents such as dimethyl sulfoxide are used to study the interactions between the amyloid-β peptide and carbon nanotubes. In this work, the interaction of Aβ (1-42), the most effective peptide in the development of Alzheimer's disease, with the carbon nanotube was performed using...

متن کامل

Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.

Many potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or b...

متن کامل

Investigating the Ibuprofen Chiral Forms Interactions with Single Wall Carbon Nanotube

The aim of this study is investigating the transport mechanism of ibuprofen chiral isomers inside single wall carbon nano tube (SWCNT) using mathematical modeling. To achieve this goal, molecular dynamics simulation has been performed to evaluate the interactions of ibuprofen isomers with SWCNT in an aqueous solution. Results show that both chiral forms of ibuprofen molecules enter and remain i...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 2 6  شماره 

صفحات  -

تاریخ انتشار 2010