Constructing Near Spanning Trees with Few Local Inspections

نویسندگان

  • Reut Levi
  • Guy Moshkovitz
  • Dana Ron
  • Ronitt Rubinfeld
  • Asaf Shapira
چکیده

Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded-degree graph. Given an edge e in G we would like to decide whether e belongs to a connected subgraph G consisting of (1 + ǫ)n edges (for a prespecified constant ǫ > 0), where the decision for different edges should be consistent with the same subgraph G. Can this task be performed by inspecting only a constant number of edges in G? Our main results are: • We show that if every t-vertex subgraph of G has expansion 1/(log t) then one can (deterministically) construct a sparse spanning subgraph G of G using few inspections. To this end we analyze a “local” version of a famous minimum-weight spanning tree algorithm. • We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of 3-regular graphs of high girth, in which every t-vertex subgraph has expansion 1/(log t).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Properties of Triangular Graphs

In the paper triangular graphs are discussed. The class of triangular graphs is of special interest as unifying basic features of complete graphs with trees and being used on many various occasions. They model processor networks in which local computations can be easily implemented. The main issue addressed in the paper is to characterize class of triangular graphs (defined globally) by local m...

متن کامل

Construction independent spanning trees on locally twisted cubes in parallel

Let LTQn denote the n-dimensional locally twisted cube. Hsieh and Tu (2009) [13] presented an algorithm to construct n edge-disjoint spanning trees rooted at vertex 0 in LTQn. Later on, Lin et al. (2010) [23] proved that Hsieh and Tu’s spanning trees are indeed independent spanning trees (ISTs for short), i.e., all spanning trees are rooted at the same vertex r and for any other vertex v(6= r),...

متن کامل

On relation between the Kirchhoff index and number of spanning trees of graph

Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

Constructing edge-disjoint spanning trees in locally twisted cubes

The use of edge-disjoint spanning trees for data broadcasting and scattering problem in networks provides a number of advantages, including the increase of bandwidth and faulttolerance. In this paper, we present an algorithm for constructing n edge-disjoint spanning trees in ann-dimensional locally twisted cube. Since then-dimensional locally twisted cube is regular with the common degree n, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015