AP180 Maintains the Distribution of Synaptic and Vesicle Proteins in the Nerve Terminal and Indirectly Regulates the Efficacy of Ca-triggered Exocytosis
نویسندگان
چکیده
AP180 plays an important role in clathrin-mediated endocytosis of synaptic vesicles (SVs) and has also been implicated in retrieving SV proteins. In Drosophila, deletion of its homolog, Like-AP180 (LAP), has been shown to increase the size of SVs, but decrease the number of SVs and transmitter release. However, it remains elusive whether a reduction in the total vesicle pool directly affects transmitter release. Further, it is unknown whether the lap mutant also affects vesicle protein retrieval and synaptic protein localization, and if so, how it might affect exocytosis. Using a combination of electrophysiology, optical imaging, electron microscopy, and immunocytochemistry, we have further characterized the lap mutant and hereby show that LAP plays additional roles in maintaining both normal synaptic transmission and protein distribution at synapses. While increasing the rate of spontaneous vesicle fusion, the lap mutation dramatically reduces impulse-evoked transmitter release at steps downstream of calcium entry and vesicle docking. Notably, lap mutations disrupt calcium coupling to exocytosis and reduce calcium cooperativity. These results suggest a primary defect in calcium sensors on the vesicles or on the release machinery. Consistent with this hypothesis, three vesicle proteins critical for calcium-mediated exocytosis, synaptotagmin I, cysteine-string protein, and neuronal synaptobrevin, are all mislocalized to the extrasynaptic axonal regions along with Dap160, an active zone marker (nc82), and glutamate receptors in the mutant. These results suggest that AP180 is required for either recycling vesicle proteins and/or maintaining the distribution of both vesicle and synaptic proteins in the nerve terminal.
منابع مشابه
AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
AP180 plays an important role in clathrin-mediated endocytosis of synaptic vesicles (SVs) and has also been implicated in retrieving SV proteins. In Drosophila, deletion of its homologue, Like-AP180 (LAP), has been shown to increase the size of SVs but decrease the number of SVs and transmitter release. However, it remains elusive whether a reduction in the total vesicle pool directly affects t...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملClathrin-mediated endocytosis: the physiological mechanism of vesicle retrieval at hippocampal synapses.
The maintenance of synaptic transmission requires that vesicles are recycled after releasing neurotransmitter. Several modes of retrieval have been proposed to operate at small synaptic terminals of central neurons, but the relative importance of these has been controversial. It is established that synaptic vesicles can collapse on fusion and the machinery for retrieving this membrane by clathr...
متن کاملA Novel All Helix Fold of the AP180 Amino-Terminal Domain for Phosphoinositide Binding and Clathrin Assembly in Synaptic Vesicle Endocytosis
Clathrin-mediated endocytosis plays a major role in retrieving synaptic vesicles from the plasma membrane following exocytosis. This endocytic process requires AP180 (or a homolog), which promotes the assembly and restricts the size of clathrin-coated vesicles. The highly conserved 33 kDa amino-terminal domain of AP180 plays a critical role in binding to phosphoinositides and in regulating the ...
متن کامل