Algorithms for Comparing Pedigree Graphs
نویسندگان
چکیده
Pedigree graphs, which represent family relationships, are often constructed by collecting data from genealogical records to determine which pairs of people are parent and child. This process is expensive, and small mistakes in data collection–for example, one missing parent-child relationship–can cause large differences in the pedigree graphs created. In this paper, we introduce a simple pedigree definition based on a different type of data which is potentially easier to collect. This alternative characterization of a pedigree that describes a pedigree as a list of the descendants of each individual, rather than a list of parent-child relationships. We then introduce an algorithm that generates the pedigree graph from this list of descendants. We also consider the problem of comparing two pedigree graphs, which could be useful to evaluate the differences between pedigrees constructed via different methods. Specifically, this could be useful to evaluate pedigree reconstruction methods. We define the edit distance between two pedigrees and prove that calculating this edit distance is APX-hard. Our new characterization of a pedigree allows us to introduce a fast heuristic for the edit distance between pedigrees. In addition we introduce several exact algorithms for calculating distances in restricted and general cases.
منابع مشابه
Comparing Pedigree Graphs
Pedigree graphs, or family trees, are typically constructed by an expensive process of examining genealogical records to determine which pairs of individuals are parent and child. New methods to automate this process take as input genetic data from a set of extant individuals and reconstruct ancestral individuals. There is a great need to evaluate the quality of these methods by comparing the e...
متن کاملComparing Unlabeled Pedigree Graphs via Covering with Bipartite and Path
Family trees, also called pedigrees, have important information about an individual's past and future life. It can be used as a diagnostic tool and help guide decisions about genetic testing for the patient and at-risk family members. There are 2% to 10% of parent-child relationships missing, and this can cause large differences in the pedigree graphs created. Hence, the evaluation of pedigrees...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملNormalized Tenacity and Normalized Toughness of Graphs
In this paper, we introduce the novel parameters indicating Normalized Tenacity ($T_N$) and Normalized Toughness ($t_N$) by a modification on existing Tenacity and Toughness parameters. Using these new parameters enables the graphs with different orders be comparable with each other regarding their vulnerabilities. These parameters are reviewed and discussed for some special graphs as well.
متن کاملOn the Graph of the Pedigree Polytope
Pedigree polytopes are extensions of the classical Symmetric Traveling Salesman Problem polytopes whose graphs (1-skeletons) contain the TSP polytope graphs as spanning subgraphs. While deciding adjacency of vertices in TSP polytopes is coNP-complete, Arthanari has given a combinatorial (polynomially decidable) characterization of adjacency in Pedigree polytopes. Based on this characterization,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.0909 شماره
صفحات -
تاریخ انتشار 2010