The Krein Matrix and an Interlacing Theorem

نویسندگان

  • Shamuel Auyeung
  • Eric Yu
چکیده

Consider the linear general eigenvalue problem Ay = λBy , where A and B are both invertible and Hermitian N × N matrices. In this paper we construct a set of meromorphic functions, the Krein eigenvalues, whose zeros correspond to the real eigenvalues of the general eigenvalue problem. The Krein eigenvalues are generated by the Krein matrix, which is constructed through projections on the positive and negative eigenspaces of B . The number of Krein eigenvalues depends on the number of negative eigenvalues for B . These constructions not only allow for us to determine solutions to the general eigenvalue problem, but also to determine the Krein signature for each real eigenvalue. Furthermore, by applying our formulation to the simplest case of the general eigenvalue problem (where B has one negative eigenvalue), we are able to show an interlacing theorem between the eigenvalues for the general problem and the eigenvalues of A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cone theoretic Krein-Milman theorem in semitopological cones

In this paper, a Krein-Milman  type theorem in $T_0$ semitopological cone is proved,  in general. In fact, it is shown that in any locally convex $T_0$ semitopological cone, every convex compact saturated subset is the compact saturated convex hull of its extreme points, which improves the results of Larrecq.

متن کامل

The Krein signature, Krein eigenvalues, and the Krein Oscillation Theorem

In this paper the problem of locating eigenvalues of negative Krein signature is considered for operators of the form JL, where J is skew-symmetric with bounded inverse and L is self-adjoint. A finite-dimensional matrix, hereafter referred to as the Krein matrix, associated with the eigenvalue problem JLu = λu is constructed with the property that if the Krein matrix has a nontrivial kernel for...

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Non - Linear Eigenvalue - EigenvectorProblems for STP

We consider the eigenvalue-eigenvector problem where p 1 p m?1 = r. We prove an analogue of the classical Gantmacher{Krein Theorem for the eigenvalue-eigenvector structure of STP matrices in the case where p i 1 for each i, plus various extensions thereof. A matrix A is said to be strictly totally positive (STP) if all its minors are strictly positive. STP matrices were independently introduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013