Numerically satisfactory solutions of hypergeometric recursions

نویسندگان

  • Amparo Gil
  • Javier Segura
  • Nico M. Temme
چکیده

Each family of Gauss hypergeometric functions fn = 2F1(a + ε1n, b + ε2n; c + ε3n; z), n ∈ Z , for fixed εj = 0,±1 (not all εj equal to zero) satisfies a second order linear difference equation of the form Anfn−1 + Bnfn + Cnfn+1 = 0. Because of symmetry relations and functional relations for the Gauss functions, many of the 26 cases (for different εj values) can be transformed into each other. In this way, only with four basic difference equations can all other cases be obtained. For each of these recurrences, we give pairs of numerically satisfactory solutions in the regions in the complex plane where |t1| 6= |t2|, t1 and t2 being the roots of the characteristic equation. 2000 Mathematics Subject Classification: 33C05, 39A11, 41A60, 65D20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitory minimal solutions of hypergeometric recursions and pseudoconvergence of associated continued fractions

Three term recurrence relations yn+1+bnyn+anyn−1 = 0 can be used for computing recursively a great number of special functions. Depending on the asymptotic nature of the function to be computed, different recursion directions need to be considered: backward for minimal solutions and forward for dominant solutions. However, some solutions interchange their role for finite values of n with respec...

متن کامل

The ABC of Hyper Recursions

Each family of Gauss hypergeometric functions fn = 2F1(a + ε1n, b + ε2n; c + ε3n; z), for fixed εj = 0,±1 (not all εj equal to zero) satisfies a second order linear difference equation of the form Anfn−1 + Bnfn + Cnfn+1 = 0. Because of symmetry relations and functional relations for the Gauss functions, many of the 26 cases (for different εj values) can be transformed into each other. We give a...

متن کامل

Identifying minimal and dominant solutions for Kummer recursions

We identify minimal and dominant solutions of three-term recurrence relations for the confluent hypergeometric functions 1F1(a + 1n; c + 2n; z) and U(a + 1n, c + 2n, z), where i = 0,±1 (not both equal to 0). The results are obtained by applying Perron’s theorem, together with uniform asymptotic estimates derived by T. M. Dunster for Whittaker functions with large parameter values. The approxima...

متن کامل

APPROXIMATIONS TO - , DI - AND TRI - LOGARITHMS 3 Proof

We propose hypergeometric constructions of simultaneous approximations to polylogarithms. These approximations suit for computing the values of polylogarithms and satisfy 4-term Apéry-like (polynomial) recursions. The series for the logarithm function

متن کامل

Approximations to -, di- and tri-logarithms

We propose hypergeometric constructions of simultaneous approximations to polylogarithms. These approximations suit for computing the values of polylogarithms and satisfy 4-term Apéry-like (polynomial) recursions. © 2006 Elsevier B.V. All rights reserved. MSC: 33C20; 33F10; 11J70; 11M06

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2007