A Spatial Regularization of LDA for Face Recognition
نویسنده
چکیده
This paper proposes a new spatial regularization of Fisher linear discriminant analysis (LDA) to reduce the overfitting due to small size sample (SSS) problem in face recognition. Many regularized LDAs have been proposed to alleviate the overfitting by regularizing an estimate of the within-class scatter matrix. Spatial regularization methods have been suggested that make the discriminant vectors spatially smooth, leading to mitigation of the overfitting. As a generalized version of the spatially regularized LDA, the proposed regularized LDA utilizes the non-uniformity of spatial correlation structures in face images in adding a spatial smoothness constraint into an LDA framework. The region-dependent spatial regularization is advantageous for capturing the non-flat spatial correlation structure within face image as well as obtaining a spatially smooth projection of LDA. Experimental results on public face databases such as ORL and CMU PIE show that the proposed regularized LDA performs well especially when the number of training images per individual is quite small, compared with other regularized LDAs.
منابع مشابه
Regularization of LDA for Face Recognition: A Post-processing Approach
When applied to high-dimensional classification task such as face recognition, linear discriminant analysis (LDA) can extract two kinds of discriminant vectors, those in the null space (irregular) and those in the range space (regular) of the within-class scatter matrix. Recently, regularization techniques, which alleviate the over-fitting to the training set, have been used to further improve ...
متن کاملSVM-based feature extraction for face recognition
The primary goal of linear discriminant analysis (LDA) in face feature extraction is to find an effective subspace for identity discrimination. The introduction of kernel trick has extended the LDA to nonlinear decision hypersurface. However, there remained inherent limitations for the nonlinear LDA to deal with physical applications under complex environmental factors. These limitations includ...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملPrediction of eigenvalues and regularization of eigenfeatures for human face verification
We present a prediction and regularization strategy for alleviating the conventional problems of LDA and its variants. A procedure is proposed for predicting eigenvalues using few reliable eigenvalues from the range space. Entire eigenspectrum is divided using two control points, however, the effective low-dimensional discriminative vectors are extracted from the whole eigenspace. The estimated...
متن کاملLinear Discriminant Analysis for Subclustered Data
Linear discriminant analysis (LDA) is a widely-used feature extraction method in classification. However, the original LDA has limitations due to the assumption of a unimodal structure for each cluster, which is not satisfied in many applications such as facial image data when variations, e.g. angle and illumination, can significantly influence the images. In this paper, we propose a novel meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Fuzzy Logic and Intelligent Systems
دوره 10 شماره
صفحات -
تاریخ انتشار 2010