An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.

نویسندگان

  • Joseph L Greenstein
  • Raimond L Winslow
چکیده

The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte

The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous func...

متن کامل

Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.

It is now well established that characteristic properties of excitation-contraction (EC) coupling in cardiac myocytes, such as high gain and graded Ca(2+) release, arise from the interactions that occur between L-type Ca(2+) channels (LCCs) and nearby ryanodine-sensitive Ca(2+) release channels (RyRs) in localized microdomains. Descriptions of Ca(2+)-induced Ca(2+) release (CICR) that account f...

متن کامل

Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue

Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs). However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not unde...

متن کامل

The role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations.

Certain signaling events that promote L-type Ca2+ channel (LCC) phosphorylation, such as beta-adrenergic stimulation or an increased expression of Ca(2+)/calmodulin-dependent protein kinase II, promote mode 2 gating of LCCs. Experimental data suggest the hypothesis that these events increase the likelihood of early after-depolarizations (EADs). We test this hypothesis using an ionic model of th...

متن کامل

Ca2+-independent inhibition of myocardial contraction by coronary effluent of hypoxic rat hearts.

Endothelial cells release agents that influence cardiac contraction. We recently reported that cultured hypoxic endothelial cells release an unidentified factor(s) that inhibits myocardial contraction. In this study, we investigated the effects of coronary effluent of isolated hypoxic rat hearts on isolated rat ventricular myocyte contraction. Coronary effluent collected during brief moderate h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 83 6  شماره 

صفحات  -

تاریخ انتشار 2002