Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

نویسندگان

  • Songling Shan
  • Guantao Chen
چکیده

A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two questions were restated as two conjectures by Archdeacon in 2009. The first part of this dissertation gives a proof for each of the two conjectures. The second part focuses on some problems about Halin graphs, which is a class of graphs closely related to HITs and HISTs. A Halin graph is obtained from a plane embedding of a HIT of at least 4 vertices by connecting its leaves into a cycle following the cyclic order determined by the embedding. And a generalized Halin graph is obtained from a HIT of at least 4 vertices by connecting the leaves into a cycle. Let G be a sufficiently large n-vertex graph. Applying the Regularity Lemma and the Blow-up Lemma, it is shown that G contains a spanning Halin subgraph if it has minimum degree at least (n+ 1)/2 and G contains a spanning generalized Halin subgraph if it is 3-connected and has minimum degree at least (2n + 3)/5. The minimum degree conditions are best possible. The last part estimates the length of longest cycles in 3-connected graphs with bounded maximum degrees. In 1993 Jackson and Wormald conjectured that for any positive integer d ≥ 4, there exists a positive real number α depending only on d such that if G is a 3-connected n-vertex graph with maximum degree d, then G has a cycle of length at least αnd−1 . They showed that the exponent in the bound is best possible if the conjecture is true. The conjecture is confirmed for d ≥ 425. INDEXWORDS: Homeomorphically irreducible spanning tree, Halin graph, Genaralized Halin graph, 3-connected graphs, Tutte decomposition. Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeomorphically Irreducible Spanning Trees in Locally Connected Graphs

A spanning tree T of a graph G is called a homeomorphically irreducible spanning tree (HIST) if T does not contain vertices of degree 2. A graph G is called locally connected if for every vertex v ∈ V (G), the subgraph induced by the neighborhood of v is connected. In this paper, we prove that every connected and locally connected graph with more than 3 vertices contains a HIST. Consequently, w...

متن کامل

A characterization of P5-free graphs with a homeomorphically irreducible spanning tree

A spanning tree with no vertices of degree two is called a homeomorphically irreducible spanning tree (or a HIST ) of a graph. In [7], sets of forbidden subgraphs that imply the existence of a HIST in a connected graph of sufficiently large order were characterized. In this paper, we focus on characterizing connected P5-free graphs which have a HIST. As applications of our main result, we also ...

متن کامل

Listing all spanning trees in Halin graphs - sequential and Parallel view

For a connected labelled graph G, a spanning tree T is a connected and an acyclic subgraph that spans all vertices of G. In this paper, we consider a classical combinatorial problem which is to list all spanning trees of G. A Halin graph is a graph obtained from a tree with no degree two vertices and by joining all leaves with a cycle. We present a sequential and parallel algorithm to enumerate...

متن کامل

Lovász-Plummer conjecture on Halin graphs

A Halin graph, defined by Halin [3], is a plane graph H = T ∪ C such that T is a spanning tree of H with no vertices of degree 2 where |T | ≥ 4 and C is a cycle whose vertex set is the set of leaves of T . In his work, as an example of a class of edge-minimal 3-connected plane graphs, Halin constructed this family of plane graphs, which have many interesting properties. Lovász and Plummer [5] n...

متن کامل

A note on max-leaves spanning tree problem in Halin graphs

A Halin graph H is a planar graph obtained by drawing a tree T in the plane, where T has no vertex of degree 2, then drawing a cycle C through all leaves in the plane. We write H = T ∪ C, where T is called the characteristic tree and C is called the accompanying cycle. The problem is to find a spanning tree with the maximum number of leaves in a Halin graph. In this paper, we prove that the cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015