Real-coded Genetic Optimization of Fuzzy Clustering

نویسندگان

  • Konstantinos Blekas
  • Andreas Stafylopatis
چکیده

A genetic approach is developed, which is suitable for the optimization of fuzzy c-means clustering. The approach is based on real encoding of the prototype variables (cluster centers) and uses appropriate genetic operators and techniques to optimize the clustering criterion. Experimental results concerning diicult clustering problems show that the proposed approach is very successful in generating fuzzy partitions and prototypes and outperforms the fuzzy c-means algorithm in terms of the correct placement of patterns into partitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Objective Differential Evolution for Automatic Clustering with Application to Micro-Array Data Analysis

This paper applies the Differential Evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performances of two multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm c...

متن کامل

Using Fuzzy Cognitive Maps for Prediction of Knowledge Worker Productivity Based on Real Coded Genetic Algorithm

  Improving knowledge worker productivity has been one of the most important tasks of the century. However, we have few measures or management interventions to make such improvement possible, and it is difficult to identify patterns that should be followed by knowledge workers because systems and processes in an organization are often regarded as a death blow to creativity. In this paper, we se...

متن کامل

Data Clustering Using Multi-objective Differential Evolution Algorithms

The article considers the task of fuzzy clustering in a multi-objective optimization (MO) framework. It compares the relative performance of four recently developed multi-objective variants of Differential Evolution (DE) on over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorit...

متن کامل

OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...

متن کامل

Automatic Clustering Using a Synergy of Genetic Algorithm and Multi-objective Differential Evolution

This paper applies the Differential Evolution (DE) and Genetic Algorithm (GA) to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performance a hybrid of the GA and DE (GADE) algorithms over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996