Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

نویسندگان

  • Mara G. Freire
  • Pedro J. Carvalho
  • Lígia R. Gomes
  • Isabel M. Marrucho
  • João A.P. Coutinho
چکیده

This work aims at providing experimental and theoretical information about the water–perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aqueous solubility, effects of salts on aqueous solubility, and partitioning behavior of hexafluorobenzene: experimental results and COSMO-RS predictions.

The aqueous solubility of hexafluorobenzene has been determined, at 298.15K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/a...

متن کامل

Application of quantum chemical approximations to environmental problems: prediction of water solubility for nitro compounds.

Water solubility values for 27 nitro compounds with experimentally measured values were computed using the conductor-like screening model for real solvent (COSMO-RS) based on the density functional theory and COSMO technique. We have found that the accuracy of the COSMO-RS approach for prediction of water solubility of liquid nitro compounds is impressively high (the errors are lower than 0.1 L...

متن کامل

Prediction of solubility of practically insoluble drugs in water/ethanol solvents using non-empirical methods

The solubilities of ibuprofen and diazepam in water/ethanol binary solutions were predicted using COSMO-RS and UNIFAC. In case of the ibuprofen system, RMSE was 0.183, and COSMO-RS reproduced the experimental values well. The RMSE of UNIFAC was 0.628, and the solubilities predicted by UNIFAC were smaller than experimental values. Polarizabilities of several drugs in vacuum, water, and ethanol w...

متن کامل

Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS.

The methodology for the prediction of properties of environmental relevance of polycyclic aromatic hydrocarbons based on the conductor-like screening model for real solvents (COSMO-RS/COSMOtherm) is presented and evaluated, with a special focus on the aqueous solubility of polycyclic aromatic hydrocarbons and related aromatic hydrocarbons (PAHs). It is shown that the solubility predictions as w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009