A Weighted Belief Entropy-Based Uncertainty Measure for Multi-Sensor Data Fusion
نویسندگان
چکیده
In real applications, how to measure the uncertain degree of sensor reports before applying sensor data fusion is a big challenge. In this paper, in the frame of Dempster-Shafer evidence theory, a weighted belief entropy based on Deng entropy is proposed to quantify the uncertainty of uncertain information. The weight of the proposed belief entropy is based on the relative scale of a proposition with regard to the frame of discernment (FOD). Compared with some other uncertainty measures in Dempster-Shafer framework, the new measure focuses on the uncertain information represented by not only the mass function, but also the scale of the FOD, which means less information loss in information processing. After that, a new multi-sensor data fusion approach based on the weighted belief entropy is proposed. The rationality and superiority of the new multi-sensor data fusion method is verified according to an experiment on artificial data and an application on fault diagnosis of a motor rotor.
منابع مشابه
Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملA Novel Evidence Theory and Fuzzy Preference Approach-Based Multi-Sensor Data Fusion Technique for Fault Diagnosis
The multi-sensor data fusion technique plays a significant role in fault diagnosis and in a variety of such applications, and the Dempster-Shafer evidence theory is employed to improve the system performance; whereas, it may generate a counter-intuitive result when the pieces of evidence highly conflict with each other. To handle this problem, a novel multi-sensor data fusion approach on the ba...
متن کاملSHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS
Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...
متن کاملSome Results on Weighted Cumulative Entropy
Considering Rao et al. (2004) and Di Crescenzo and Longobardi (2009) studies, Misagh et al. (2011) proposed a weighted information which is based on the cumulative entropy called Weighted Cumulative Entropy (WCE). The above-mentioned model is a Shiftdependent Uncertainty Measure. In this paper, we examine some of the properties of WCE and obtain some bounds for that. In order to ...
متن کاملEntropy-Based Markov Chains for Multisensor Fusion
This paper proposes an entropy based Markov chain (EMC) fusion technique and demonstrates its applications in multisensor fusion. Self-entropy and conditional entropy, which measure how uncertain a sensor is about its own observation and joint observations respectively, are adopted. We use Markov chain as an observation combination process because of two major reasons: (a) the consensus output ...
متن کامل