The Cauchy Problem for Compressible Hydrodynamic-Maxwell Systems: A Local Theory for Smooth Solutions

نویسنده

  • Joseph W. Jerome
چکیده

The Hydrodynamic-Maxwell equations are studied, as a compressible model of charge transport induced by an electromagnetic field in semiconductors. A local smooth solution theory for the Cauchy problem is established by the author’s modification of the classical semigroup-resolvent approach of Kato. The author’s theory has three noteworthy features: (1) stability under vanishing heat flux, which is not derivable from other theories; (2) accommodation to arbitrarily specified terminal time for the regularized problem; and, (3) constructive in nature, in that it is based upon time semidiscretization, and the solution of these semidiscrete problems determines the localization theory criteria. The regularization is employed to avoid vacuum states, and eliminated for the final results which may contract the admissible time interval. We also provide a symmetrized formulation in matrix form which is useful for applications and simulation. The theory uses the generalized energy estimates of Friedrichs on the ground function space, and leverages them to the smooth space via Kato’s commutator estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem for the Euler Equations for Compressible Fluids

Some recent developments in the study of the Cauchy problem for the Euler equations for compressible fluids are reviewed. The local and global well-posedness for smooth solutions is presented, and the formation of singularity is exhibited; then the local and global well-posedness for discontinuous solutions, including the BV theory and the L∞ theory, is extensively discussed. Some recent develo...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

Functional Analytic Methods for Evolution Systems: Local Smooth Theory Stable Under Singular Limits

By using two prototypical applications, the hydrodynamic-Maxwell system and the Navier-Stokes/charge transport system, we discuss the current relevance of local smooth theories for the Cauchy problem based on semigroup methods, and inspired by the Friedrichs and Kato inequalities. There appear to be three major advantages to the use of this theory: stability under the vanishing of diffusion or ...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

Non - Symmetric Hyperbolic Problems

We study the Cauchy problem for nonsymmetric hyperbolic diierential operators with diierent timescales P = 1 P 0 (@ @x)+P 1 (x; t; @ @x); 0 < 1. Suucient conditions for well-posedness independently of are derived. The bounded derivative principle is also shown to be valid, i.e. there exists smooth initial data such that a number of time derivatives are uniformly bounded initially. This gives an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016