Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.

نویسندگان

  • B Cheng
  • S N Fry
  • Q Huang
  • X Deng
چکیده

We systematically investigated the effect of body rotation on the aerodynamic torque generation on flapping wings during fast turning maneuvers (body saccades) in the fruit fly Drosophila. A quasi-steady aerodynamic simulation of turning maneuvers with symmetrically flapping wings showed that body rotation causes a substantial aerodynamic counter-torque, known as flapping counter-torque (FCT), which acts in the opposite direction to turning. Simulation results further indicate that FCTs are linearly dependent on the rotational velocity and the flapping frequency regardless of the kinematics of wing motion. We estimated the damping coefficients for the principal rotation axes - roll, pitch, yaw - in the stroke plane frame. FCT-induced passive damping exists about all the rotation axes examined, suggesting that the effects of body rotation cannot be ignored in the analysis of free-flight dynamics. Force measurements on a dynamically scaled robotic wing undergoing realistic saccade kinematics showed that although passive aerodynamic damping due to FCT can account for a large part of the deceleration during saccades, active yaw torque from asymmetric wing motion is required to terminate body rotation. In addition, we calculated the mean value of the damping coefficient at 21.00 x10(-12) N m s based on free-flight data of saccades, which is somewhat lower than that estimated by the simulation results (26.84 x 10(-12) N m s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The aerodynamics of free-flight maneuvers in Drosophila.

Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motio...

متن کامل

The Generation of Forces and Moments during Visual-Evoked Steering Maneuvers in Flying Drosophila

Sideslip force, longitudinal force, rolling moment, and pitching moment generated by tethered fruit flies, Drosophila melanogaster, were measured during optomotor reactions within an electronic flight simulator. Forces and torques were acquired by optically measuring the angular deflections of the beam to which the flies were tethered using a laser and a photodiode. Our results indicate that fr...

متن کامل

Mathematical Modelling of Near-hover Insect Flight Dynamics

Using a dynamically scaled robotic wing, we studied the aerodynamic torque generation of flapping wings during roll, pitch, and yaw rotations of the stroke plane. The total torque generated by a wing pair with symmetrical motions was previously known as flapping counter-torques (FCTs). For all three types of rotation, stroke-averaged FCTs act opposite to the directions of rotation and are colli...

متن کامل

The production of elevated flight force compromises manoeuvrability in the fruit fly Drosophila melanogaster.

In this study, we have investigated how enhanced total flight force production compromises steering performance in tethered flying fruit flies, Drosophila melanogaster. The animals were flown in a closed-loop virtual-reality flight arena in which they modulated total flight force production in response to vertically oscillating visual patterns. By simultaneously measuring stroke amplitude and s...

متن کامل

The Initiation and Control of Rapid Flight Maneuvers in Fruit Flies1

SYNOPSIS. Fruit flies alter flight direction by generating rapid, stereotyped turns, called saccades. The successful implementation of these quick turns requires a well-tuned orchestration of neural circuits, musculo-skeletal mechanics, and aerodynamic forces. The changes in wing motion required to accomplish a saccade are quite subtle, as dictated by the inertial dynamics of the fly’s body. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 4  شماره 

صفحات  -

تاریخ انتشار 2010