Oxidation of cysteines activates cGMP-dependent protein kinase.
نویسندگان
چکیده
The functional significance of the oxidation/reduction state of sulfhydryl groups of cGMP-dependent protein kinase (cGMP kinase) was studied at 30 degrees C using different metal ions as oxidizing agents. Mn2+, Zn2+, Fe2+, Ni2+, and Co2+ failed to activate cGMP kinase, whereas Cu2+, Cu+, Fe3+, Hg2+, and Ag+ activated cGMP kinase by oxidation with an activity ratio (-cGMP/+cGMP) of about 0.7. The activation was not caused by degradation of the enzyme to a cGMP-independent constitutively active form. Reduction of the Cu(2+)-activated and gel-filtered enzyme with dithiothreitol lowered the activity ratio in the absence of cGMP to 0.17. Oxidation did not change the kinetic and binding parameters of cGMP kinase significantly but reduced the number of titratable sulfhydryl groups from 9.5 +/- 0.7 to 6.0 +/- 0.4 cysteines/75-kDa subunit. The free cysteinyl residues of the native and Cu(2+)-oxidized cGMP kinase were labeled with 4-dimethylaminoazobenzene-4'-iodoacetamide or N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide. Tryptic peptides of the labeled proteins were isolated and sequenced. The cysteinyl residues oxidized by Cu2+ were identified as disulfide bonds between Cys-117 and Cys-195 and Cys-312 and Cys-518, respectively. Cu2+ activation of cGMP kinase was prevented by mild carboxymethylation of the reduced enzyme with iodoacetamide, which apparently modified these four cysteinyl groups. The results show that cGMP kinase is activated by the formation of at least one intrachain disulfide bridge.
منابع مشابه
Oxidation-induced intramolecular disulfide bond inactivates mitogen-activated protein kinase kinase 6 by inhibiting ATP binding.
Mitogen-activated protein kinase kinase 6 (MKK6) is a member of the mitogen-activated protein kinase (MAPK) kinase (MAP2K) subfamily that specifically phosphorylates and activates the p38 MAPKs. Based on both biochemical and cellular assays, we found that MKK6 was extremely sensitive to oxidation: It was inactivated by oxidation and its kinase activity was fully restored upon treatment with a r...
متن کاملRegulation of gene expression by cyclic GMP-dependent protein kinase requires nuclear translocation of the kinase: identification of a nuclear localization signal.
We recently demonstrated that cyclic GMP (cGMP)-dependent protein kinase (G-kinase) activates the human fos promoter in a strictly cGMP-dependent manner (T. Gudi et al., J. Biol. Chem. 271:4597-4600, 1996). Here, we demonstrate that G-kinase translocates to the nucleus by an active transport mechanism which requires a nuclear localization signal (NLS) and is regulated by cGMP. Immunofluorescent...
متن کاملRedox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system
Elevated levels of oxidants in biological systems have been historically referred to as "oxidative stress," a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limi...
متن کاملSynergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP.
The high cGMP sensitivity of cAMP-dependent protein kinase A (type II) (PKAII) from invertebrates led to the hypothesis that cGMP directly activates PKAII under physiological conditions. We tested this idea using PKAII holoenzyme purified from the honeybee brain in an assay with short stimulation times. In the presence of very low cAMP concentrations, we found a synergistic increase in PKAII ac...
متن کاملActivation of cGMP-dependent protein kinase Iα and cAMP-dependent protein kinase A isoforms by cyclic nucleotides
Introduction cAMP and cGMP are second messengers that play important roles in intracellular signal transduction of various external stimuli. Major functions of both are the activation of cAMP-dependent protein kinase A (PKA) and cGMP-dependent protein kinase G (PKG), respectively. PKA and PKG are members of the serine-threonine protein kinase superfamily and are involved in the control of vario...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 25 شماره
صفحات -
تاریخ انتشار 1991