The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs

نویسندگان

  • Jialin Hong
  • Hongyu Liu
  • Geng Sun
چکیده

In this article we consider partitioned Runge-Kutta (PRK) methods for Hamiltonian partial differential equations (PDEs) and present some sufficient conditions for multi-symplecticity of PRK methods of Hamiltonian PDEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic invariants and multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs

In this paper, we study the preservation of quadratic conservation laws of Runge-Kutta methods and partitioned Runge-Kutta methods for Hamiltonian PDEs and establish the relation between multi-symplecticity of Runge-Kutta method and its quadratic conservation laws. For Schrödinger equations and Dirac equations, the relation implies that multi-sympletic RungeKutta methods applied to equations wi...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

On multisymplecticity of partitioned Runge–Kutta and splitting methods

Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...

متن کامل

Structure-preserving Exponential Runge-Kutta Methods

Exponential Runge-Kutta (ERK) and partitioned exponential Runge-Kutta (PERK) 4 methods are developed for solving initial value problems with vector fields that can be split into con5 servative and linear non-conservative parts. The focus is on linearly damped ordinary differential 6 equations, that possess certain invariants when the damping coefficient is zero, but, in the presence of 7 consta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006