Cytoplasmic components of acetylcholine receptor clusters of cultured rat myotubes: the 58-kD protein
نویسندگان
چکیده
A 58-kD protein, identified in extracts of postsynaptic membrane from Torpedo electric organ, is enriched at sites where acetylcholine receptors (AChR) are concentrated in vertebrate muscle (Froehner, S. C., A. A. Murnane, M. Tobler, H. B. Peng, and R. Sealock. 1987. J. Cell Biol. 104:1633-1646). We have studied the 58-kD protein in AChR clusters isolated from cultured rat myotubes. Using immunofluorescence microscopy we show that the 58-kD protein is highly enriched at AChR clusters, but is also present in regions of the myotube membrane lacking AChR. Within clusters, the 58-kD protein codistributes with AChR, and is absent from adjacent membrane domains involved in myotube-substrate contact. Semiquantitative fluorescence measurements suggest that molecules of the 58-kD protein and AChR are present in approximately equal numbers. Differential extraction of peripheral membrane proteins from isolated AChR clusters suggests that the 58-kD protein is more tightly bound to cluster membrane than is actin or spectrin, but less tightly bound than the receptor-associated 43-kD protein. When AChR clusters are disrupted either in intact cells or after isolation, the 58-kD protein still codistributes with AChR. Clusters visualized by electron microscopy after immunogold labeling and quick-freeze, deep-etch replication show that, within AChR clusters, the 58-kD protein is sharply confined to AChR-rich domains, where it is present in a network of filaments lying on the cytoplasmic surface of the membrane. Additional actin filaments overlie, and are attached to, this network. Our results suggest that within AChR domains of clusters, the 58-kD protein lies between AChR and the receptor-associated 43-kD protein, and the membrane-skeletal proteins, beta-spectrin, and actin.
منابع مشابه
The relationship of the postsynaptic 43K protein to acetylcholine receptors in receptor clusters isolated from cultured rat myotubes
We have examined the relationship of acetylcholine receptors (AChR) to the Mr 43,000 receptor-associated protein (43K) in the AChR clusters of cultured rat myotubes. Indirect immunofluorescence revealed that the 43K protein was concentrated at the AChR domains of the receptor clusters in intact rat myotubes, in myotube fragments, and in clusters that had been purified approximately 100-fold by ...
متن کاملIncreased expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes
The 43-kD protein is a peripheral membrane protein that is in approximately 1:1 stoichiometry with the acetylcholine receptor (AChR) in vertebrate muscle cells and colocalizes with it in the postsynaptic membrane. To investigate the role of the 43-kD protein in AChR clustering, we have isolated C2 muscle cell lines in which some cells overexpress the 43-kD protein. We find that myotubes with in...
متن کاملMobility and detergent extractability of acetylcholine receptors on cultured rat myotubes: a correlation
On aneurally cultured rat primary myotubes, 10% of the acetylcholine receptors (AChR) are found aggregated and immobilized in endogenous clusters. The remaining receptors are diffusely distributed over the cell membrane and the majority of these are free to diffuse in the plane of the membrane. This study correlates the mobility of AChR (as measured with the fluorescence photobleaching recovery...
متن کاملDispersal and reformation of acetylcholine receptor clusters of cultured rat myotubes treated with inhibitors of energy metabolism
The effects of energy metabolism inhibitors on the distribution of acetylcholine receptors (AChRs) in the surface membranes of non-innervated, cultured rat myotubes were studied by visualizing the AChRs with monotetramethylrhodamine-alpha-bungarotoxin. Incubation of myotubes with inhibitors of energy metabolism causes a large decrease in the fraction of myotubes displaying clusters of AChR. Thi...
متن کاملAcetylcholine receptor clustering in rat myotubes: requirement for CA2+ and effects of drugs which depolymerize microtubules.
The acetylcholine receptor (AChR) clusters which form in the plasma membranes of cultured rat myotubes disappear when the myotubes are exposed to medium depleted of Ca2+. This loss of receptor clusters is reversible and depends both on extracellular Ca2+ concentrations and on temperature. Other divalent cations (Mg2+, Ba2+, Sr2+, Co2+, Mn2+) do not maintain receptor clusters when Ca2+ is absent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 115 شماره
صفحات -
تاریخ انتشار 1991