N2SID: Nuclear Norm Subspace Identification
نویسندگان
چکیده
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed from the Markov parameters of the unknown observer. The classical use of instrumental variables to remove the influence of the innovation term on the data equation in subspace identification is avoided. The avoidance of the instrumental variable projection step has the potential to improve the accuracy of the estimated model predictions, especially for short data length sequences. This is illustrated using a data set from the DaSIy library. An efficient implementation in the framework of the Alternating Direction Method of Multipliers (ADMM) is presented that is used in the validation study.
منابع مشابه
Nuclear Norm Subspace Identification (N2SID) for short data batches
Subspace identification is revisited in the scope of nuclear norm minimization methods. It is shown that essential structural knowledge about the unknown data matrices in the data equation that relates Hankel matrices constructed from input and output data can be used in the first step of the numerical solution presented. The structural knowledge comprises the low rank property of a matrix that...
متن کاملN2SID: Nuclear norm subspace identification of innovation models
The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed ...
متن کاملNuclear norm system identification with missing inputs and outputs
We present a system identification method for problems with partially missing inputs and outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing input and output values as the optimization variables. We also present a fast implementation of the alternating direction method of multipliers (ADMM) to ...
متن کاملSubspace Identification of Local 1D Homogeneous Systems
This paper studies the local subspace identification of 1D homogeneous networked systems. The main challenge lies at the unmeasurable interconnection signals between neighboring subsystems. Since there are many unknown inputs to the concerned local system, the corresponding identification problem is semi-blind. To cope with this problem, a nuclear norm optimization based subspace identification...
متن کاملRobust Subspace System Identification via Weighted Nuclear Norm Optimization ?
Subspace identification is a classical and very well studied problem in system identification. The problem was recently posed as a convex optimization problem via the nuclear norm relaxation. Inspired by robust PCA, we extend this framework to handle outliers. The proposed framework takes the form of a convex optimization problem with an objective that trades off fit, rank and sparsity. As in r...
متن کامل