Osteopontin Reduces Biofilm Formation in a Multi-Species Model of Dental Biofilm
نویسندگان
چکیده
BACKGROUND Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. METHODOLOGY/PRINCIPAL FINDINGS Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. CONCLUSIONS/SIGNIFICANCE OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.
منابع مشابه
The effect of nanochitosans particles on Candida biofilm formation
Background and Purpose: In people wearing dentures, the growth of various Candida species under the prosthesis leads to the formation of biofilm, which can play the role of a reservoir for Candida and other kinds of microbes. Since nano-chitosan particles can cause lasting antimicrobial activity, a more recent approach that utilizes acrylic resins with nano-chitosan particles is proposed. Th...
متن کاملOsteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow
The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental caries or medical device-related infections. It further investigated if OPN's effect on adhesion is cau...
متن کاملMolecular Detection of Type II Toxin-Antitoxin Systems and their Association with Antibiotic Resistance and Biofilm Formation in Clinical Acinetobacter baumannii Isolates of Burn Patients
Background and purpose: Burn wounds are a good host for infections. Acinetobacter baumannii is an opportunistic bacterium in patients with burn infections. Toxin-antitoxin systems (TAS) are genetic elements that are essential for antibiotic resistance and biofilm formation in bacteria, including higBA and relBE TA systems. The present study aimed to investigate the frequency of higBA and relBE...
متن کاملActivity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro.
The formation of dental biofilm caused by oral bacteria on tooth surfaces is the primary step leading to oral diseases. This study was performed to investigate the preventive and reducing effects of panduratin A, isolated from Kaempferia pandurata Roxb., against multi-species oral biofilms consisting of Streptococcus mutans, Streptococcus sanguis and Actinomyces viscosus. Minimum inhibitory con...
متن کاملMolecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii
Background: Acinetobacter baumannii is commonly resistant to nearly all antibiotics due to presence of antibiotic resistance genes and biofilm formation. In this study we determined the presence of certain antibiotic-resistance genes associated with biofilm production and the influence of low iron concentration on expression of the biofilm-associated protein gene (bap) in development of biofilm...
متن کامل