Minimal weight expansions in Pisot bases
نویسندگان
چکیده
Abstract. For applications to cryptography, it is important to represent numbers with a small number of non-zero digits (Hamming weight) or with small absolute sum of digits. The problem of finding representations with minimal weight has been solved for integer bases, e.g. by the non-adjacent form in base 2. In this paper, we consider numeration systems with respect to real bases β which are Pisot numbers and prove that the expansions with minimal absolute sum of digits are recognizable by finite automata. When β is the Golden Ratio, the Tribonacci number or the smallest Pisot number, we determine expansions with minimal number of digits ±1 and give explicitely the finite automata recognizing all these expansions. The average weight is lower than for the non-adjacent form.
منابع مشابه
Minimal Weight Expansions in Some Pisot Bases
For numeration systems representing real numbers and integers, which are based on Pisot numbers, we study expansions with signed digits which are minimal with respect to the absolute sum of digits. It is proved that these expansions are recognizable by a finite automaton if the base β is the root of a polynomial whose (integer) coefficients satisfy a certain condition (D). When β is the Golden ...
متن کاملRedundancy of minimal weight expansions in Pisot bases
Motivated by multiplication algorithms based on redundant number representations, we study representations of an integer n as a sum n=∑kεkUk, where the digits εk are taken from a finite alphabet Σ and (Uk)k is a linear recurrent sequence of Pisot type with U0=1. The most prominent example of a base sequence (Uk)k is the sequence of Fibonacci numbers. We prove that the representations of minimal...
متن کاملBeta-expansions of rational numbers in quadratic Pisot bases
We study rational numbers with purely periodic Rényi β-expansions. For bases β satisfying β2 = aβ + b with b dividing a, we give a necessary and sufficient condition for γ(β) = 1, i.e., that all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic β-expansion. A simple algorithm for determining the value of γ(β) for all quadratic Pisot numbers β is described.
متن کامل6 On alpha - adic expansions in Pisot bases 1
We study α-adic expansions of numbers in an extension field, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansi...
متن کاملPurely Periodic β-Expansions with Pisot Unit Bases over Laurent Series
The present paper deals with β-expansions in algebraic function fields. If β is a Pisot unit, we characterise the elements whose β-expansion is purely periodic. In order to pursue this characterisation, we introduce a variant of the Rauzy fractal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Mathematical Cryptology
دوره 2 شماره
صفحات -
تاریخ انتشار 2008