Shot Noise Modeling in Metal-Oxide-Semiconductor Field Effect Transistors under Sub-Threshold Condition
نویسندگان
چکیده
We have developed a new simulation methodology for predicting shot noise intensity in Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). In our approach, shot noise in MOSFETs is calculated by employing the two dimensional device simulator MEDICI in conjunction with the shot noise model of p-n junction. The accuracy of the noise model has been demonstrated by comparing simulation results with measured noise data of p-n diodes. The intensity of shot noise in various n-MOSFET devices under various bias conditions was estimated beyond GHz operational frequency by using our simulation scheme. At DC or lowfrequency region, sub-threshold current dominates the intensity of shot noise. Therefore, shot noise is independent on frequency in this region and its intensity is exponentially depends on VG, proportional to L, and almost independent on VD. At highfrequency region above GHz frequency, on the other hand, shot noise intensity is frequency dependent and is quite larger than that of low-frequency region. In particular, the intensity of the RF shot noise is almost independent on L, VD and VG. This suggests that high-frequency shot noise intensity is decided only by the conditions of source-bulk junction.
منابع مشابه
A compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor
Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملDesign and Implementation of MOSFET Circuits and CNTFET, Ternary Multiplier in the Field of Galois
Due to the high density and the low consumption power in the digital integrated circuits, mostly technology of CMOS is used. During the past times, the Metal oxide silicon field effect transistors (MOSFET) had been used for the design and implementation of the digital integrated circuits because they are compact and also they have the less consumption power and delay to the other transistors. B...
متن کاملEfficient quantum three-dimensional modeling of fully depleted ballistic silicon-on-insulator metal-oxide-semiconductor field-effect-transistors
We present an efficient, fully quantum mechanical approach to calculating ballistic transport in fully-depleted silicon-on-insulator metal-oxide semiconductor field effect transistor devices in three dimensions and apply the technique to the calculation of threshold voltages for realistic devices with narrow channels. We illustrate the fact that each dopant configuration becomes exceedingly imp...
متن کاملNoise in Semiconductor Devices
Noise (a spontaneous fluctuation in current or in voltage) is generated in all semiconductor devices. The intensity of these fluctuations depends on device type, its manufacturing process, and operating conditions. The resulted noise, as a superposition of different noise sources, is defined as an inherent noise. The equivalent noise models (containing all noise sources) are created for a parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 90-C شماره
صفحات -
تاریخ انتشار 2007