Genetic manipulation of iron biomineralization enhances MR relaxivity in a ferritin-M6A chimeric complex
نویسندگان
چکیده
Ferritin has gained significant attention as a potential reporter gene for in vivo imaging by magnetic resonance imaging (MRI). However, due to the ferritin ferrihydrite core, the relaxivity and sensitivity for detection of native ferritin is relatively low. We report here on a novel chimeric magneto-ferritin reporter gene - ferritin-M6A - in which the magnetite binding peptide from the magnetotactic bacteria magnetosome-associated Mms6 protein was fused to the C-terminal of murine h-ferritin. Biophysical experiments showed that purified ferritin-M6A assembled into a stable protein cage with the M6A protruding into the cage core, enabling magnetite biomineralisation. Ferritin-M6A-expressing C6-glioma cells showed enhanced (per iron) r2 relaxivity. MRI in vivo studies of ferritin-M6A-expressing tumour xenografts showed enhanced R2 relaxation rate in the central hypoxic region of the tumours. Such enhanced relaxivity would increase the sensitivity of ferritin as a reporter gene for non-invasive in vivo MRI-monitoring of cell delivery and differentiation in cellular or gene-based therapies.
منابع مشابه
Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.
The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within ...
متن کاملMimicking liver iron overload using liposomal ferritin preparations.
Close monitoring of liver iron content is necessary to prevent iron overload in transfusion-dependent anemias. Liver biopsy remains the gold standard; however, MRI potentially offers a noninvasive alternative. Iron metabolism and storage is complicated and tissue/disease-specific. This report demonstrates that iron distribution may be more important than iron speciation with respect to MRI sign...
متن کاملIdentification and Localization of Proteins Associated with Biomineralization in the Iron Deposition Vesicles of Honeybees (Apis mellifera)
Honeybees (Apis mellifera) form superparamagnetic magnetite to act as a magnetoreceptor for magnetoreception. Biomineralization of superparamagnetic magnetite occurs in the iron deposition vesicles of trophocytes. Even though magnetite has been demonstrated, the mechanism of magnetite biomineralization is unknown. In this study, proteins in the iron granules and iron deposition vesicles of trop...
متن کاملEngineering intracellular biomineralization and biosensing by a magnetic protein.
Remote measurement and manipulation of biological systems can be achieved using magnetic techniques, but a missing link is the availability of highly magnetic handles on cellular or molecular function. Here we address this need by using high-throughput genetic screening in yeast to select variants of the iron storage ferritin (Ft) that display enhanced iron accumulation under physiological cond...
متن کاملCellular MRI contrast via coexpression of transferrin receptor and ferritin.
Recently there has been growing interest in the development and use of iron-based contrast agents for cellular imaging with MRI. In this study we investigated coexpression of the transferrin receptor and ferritin genes to induce cellular contrast in a biological system. Expression of transgenic human transferrin receptor and human ferritin H-subunit was induced in a stably transfected mouse neu...
متن کامل