A Data Mining with Hybrid Approach Based Transaction Risk Score Generation Model (TRSGM) for Fraud Detection of Online Financial Transaction
نویسندگان
چکیده
We propose a unique and hybrid approach containing data mining techniques, artificial intelligence and statistics in a single platform for fraud detection of online financial transaction, which combines evidences from current as well as past behavior. The proposed transaction risk generation model (TRSGM) consists of five major components, namely, DBSCAN algorithm, Linear equation, Rules, Data Warehouse and Bayes theorem. DBSCAN algorithm is used to form the clusters of past transaction amounts of the customer, find out the deviation of new incoming transaction amount and finds cluster coverage. The patterns generated by Transaction Pattern Generation Tool (TPGT) are used in Linear equation along with its weightage to generate a risk score for new incoming transaction. The guidelines shown in various web sites, print and electronic media as indication of online fraudulent transaction for Credit Card Company is implemented as rules in TRSGM. In the first four components, we determine the suspicion level of each incoming transaction based on the extent of its deviation from good pattern. The transaction is classified as genuine, fraudulent or suspicious depending on this initial belief. Once a transaction is found to be suspicious, belief is further strengthened or weakened according to its similarity with fraudulent or normal transaction history using Bayes theorem.
منابع مشابه
A hybrid approach for database intrusion detection at transaction and inter-transaction levels
Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...
متن کاملStock Market Fraud Detection, A Probabilistic Approach
In order to have a fair market condition, it is crucial that regulators continuously monitor the stock market for possible fraud and market manipulation. There are many types of fraudulent activities defined in this context. In our paper we will be focusing on "front running". According to Association of Certified Fraud Examiners, front running is a form of insider information and thus is very ...
متن کاملFraud Detection Technique in Credit Card Transactions using Convolutional Neural Network
Cashless transactions such as online transactions, credit card transactions, and mobile wallet are becoming more and more popular in financial transactions nowadays. With increased number of such cashless transaction, fraudulent transactions are also increasing. Fraud can be detected by analyzing spending behavior of customers (users) from previous transaction data. If any deviation is noticed ...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملFraud Detection by Monitoring Customer Behavior and Activities
With the enhancement in technology e-banking like credit Card, Debit Card, Mobile Banking and Internet Banking is the popular medium to transfer the money from one account to another. E-Banking is gaining popularity day by day, which increases the online transaction with the increase in online shopping, online bill payment like electricity, Insurance Premium and other charges, online recharges ...
متن کامل