CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling.

نویسندگان

  • Qing Zhou
  • Wing H Wong
چکیده

The regulatory information for a eukaryotic gene is encoded in cis-regulatory modules. The binding sites for a set of interacting transcription factors have the tendency to colocalize to the same modules. Current de novo motif discovery methods do not take advantage of this knowledge. We propose a hierarchical mixture approach to model the cis-regulatory module structure. Based on the model, a new de novo motif-module discovery algorithm, CisModule, is developed for the Bayesian inference of module locations and within-module motif sites. Dynamic programming-like recursions are developed to reduce the computational complexity from exponential to linear in sequence length. By using both simulated and real data sets, we demonstrate that CisModule is not only accurate in predicting modules but also more sensitive in detecting motif patterns and binding sites than standard motif discovery methods are.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription Factor Binding Site Prediction with Multivariate Gene Expression Data

Multi-sample microarray experiments have become a standard experimental method for studying biological systems. A frequent goal in such studies is to unravel the regulatory relationships between genes. During the last few years, regression models have been proposed for the de novo discovery of cis-acting regulatory sequences using gene expression data. However, when applied to multi-sample expe...

متن کامل

Transcription Factor Binding Site Prediction with Multivariate Gene Expression Data by Nancy

Multi-sample microarray experiments have become a standard experimental method for studying biological systems. A frequent goal in such studies is to unravel the regulatory relationships between genes. During the last few years, regression models have been proposed for the de novo discovery of cis-acting regulatory sequences using gene expression data. However, when applied to multi-sample expe...

متن کامل

Prediction of cis-regulatory elements controlling genes differentially expressed by retinal and choroidal vascular endothelial cells

Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two emdothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico b...

متن کامل

Mining Spatial Association Rules for Composite Motif Discovery

Motif discovery in biological sequences is an important field in bioinformatics. Most of the scientific research focuses on the de novo discovery of single motifs, but biological activities are typically co-regulated by several factors and this feature is properly reflected by higher order structures, called composite motifs, or cis-regulatory modules or simply modules. A module is a set of mot...

متن کامل

Computation-Based Discovery of Cis-Regulatory Modules by Hidden Markov Model

A key component in genome sequence analysis is the identification of regions of the genome that contain regulatory information. In higher eukaryotes, this information is organized into modular units called cis-regulatory modules. Each module contains multiple binding sites for a specific combination of several transcription factors. In this article, we propose a hidden Markov model (HMM) to ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 33  شماره 

صفحات  -

تاریخ انتشار 2004