Implicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential Equations

نویسندگان

  • Cui Cong
  • Xiao-Chuan Cai
  • Karl Gustafson
چکیده

We introduce and study parallel space-time domain decomposition methods for solving deterministic and stochastic parabolic equations. Traditional parallel algorithms solve parabolic problems time step by time step. The parallelism is restricted to each time step, and the algorithms are purely sequential in time. In this paper, we develop some overlapping Schwarz methods whose subdomains cover both space and time variables, and we show that the methods work well for stochastic parabolic equations discretized with an implicit stochastic Galerkin method. One-and two-level Schwarz preconditioned recycling GMRES methods are carefully investigated such that many components of the methods are reused when a large number of linear systems are solved. The key elements of this approach include an ordering algorithm and two grouping algorithms. We present some experimental results obtained on a parallel computer with more than one thousand processors. 1. Introduction. In this paper, we develop parallel implicit algorithms for solving a parabolic partial differential equation (PDE)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Domain Decomposition Method for Parabolic Problems

Domain decomposition methods are widely used to solve the parabolic partial differential equations with Dirichlet, Neumann, or mixed boundary conditions. Modified implicit prediction (MIP) algorithm is unconditionally stable domain decomposition method. In this paper, the SOR iterative technique is applied to the MIP algorithm and the optimum over-relaxation parameter is provided.

متن کامل

Efficient Parallel Solution of Nonlinear Parabolic Partial Differential Equations by a Probabilistic Domain Decomposition

Initialand initial-boundary value problems for nonlinear one-dimensional parabolic partial differential equations are solved numerically by a probabilistic domain decomposition method. This is based on a probabilistic representation of solutions by means of branching stochastic processes. Only few values of the solution inside the space-time domain are generated by a Monte Carlo method, and an ...

متن کامل

Domain Decomposition Operator Splittings for the Solution of Parabolic Equations

We study domain decomposition counterparts of the classical alternating direction implicit (ADI) and fractional step (FS) methods for solving the large linear systems arising from the implicit time stepping of parabolic equations. In the classical ADI and FS methods for parabolic equations, the elliptic operator is split along coordinate axes; they yield tridiagonal linear systems whenever a un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014