Sildenafil improves microvascular O2 delivery-to-utilization matching and accelerates exercise O2 uptake kinetics in chronic heart failure.

نویسندگان

  • Priscila A Sperandio
  • Mayron F Oliveira
  • Miguel K Rodrigues
  • Danilo C Berton
  • Erika Treptow
  • Luiz E Nery
  • Dirceu R Almeida
  • J Alberto Neder
چکیده

Nitric oxide (NO) can temporally and spatially match microvascular oxygen (O(2)) delivery (Qo(2mv)) to O(2) uptake (Vo(2)) in the skeletal muscle, a crucial adjustment-to-exercise tolerance that is impaired in chronic heart failure (CHF). To investigate the effects of NO bioavailability induced by sildenafil intake on muscle Qo(2mv)-to-O(2) utilization matching and Vo(2) kinetics, 10 males with CHF (ejection fraction = 27 ± 6%) undertook constant work-rate exercise (70-80% peak). Breath-by-breath Vo(2), fractional O(2)extraction in the vastus lateralis {∼deoxygenated hemoglobin + myoglobin ([deoxy-Hb + Mb]) by near-infrared spectroscopy}, and cardiac output (CO) were evaluated after sildenafil (50 mg) or placebo. Sildenafil increased exercise tolerance compared with placebo by ∼20%, an effect that was related to faster on- and off-exercise Vo(2) kinetics (P < 0.05). Active treatment, however, failed to accelerate CO dynamics (P > 0.05). On-exercise [deoxy-Hb + Mb] kinetics were slowed by sildenafil (∼25%), and a subsequent response "overshoot" (n = 8) was significantly lessened or even abolished. In contrast, [deoxy-Hb + Mb] recovery was faster with sildenafil (∼15%). Improvements in muscle oxygenation with sildenafil were related to faster on-exercise Vo(2) kinetics, blunted oscillations in ventilation (n = 9), and greater exercise capacity (P < 0.05). Sildenafil intake enhanced intramuscular Qo(2mv)-to-Vo(2) matching with beneficial effects on Vo(2) kinetics and exercise tolerance in CHF. The lack of effect on CO suggests that improvement in blood flow to and within skeletal muscles underlies these effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization.

Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2 , respectively). The Q̇mO...

متن کامل

CALL FOR PAPERS Exercise Training in Cardiovascular Disease: Mechanisms and Outcomes Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization

Hirai DM, Musch TI, Poole DC. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am J Physiol Heart Circ Physiol 309: H1419 –H1439, 2015. First published August 28, 2015; doi:10.1152/ajpheart.00469.2015.—Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance ...

متن کامل

Effects of chronic heart failure on microvascular oxygen exchange dynamics in muscles of contrasting fiber type.

UNLABELLED In rat spinotrapezius muscle, chronic heart failure (CHF) speeds microvascular O2 pressure (pO2; index of O2 delivery-to-O2 uptake) dynamics across the rest-contractions transition [Cardiovasc. Res. 56 (2002) 479]. Due to the mosaic nature of this muscle, the effect of CHF on microvascular pO2 dynamics in different fiber types remains unclear. OBJECTIVE Based upon derangements of e...

متن کامل

Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.

Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms...

متن کامل

Effect of Branched-Chain Amino Acid Supplementation on O2 Uptake Kinetics and Time to Exhaustion in Trained Women

Objective The aim of this study was to investigate the effect of Branched-Chain Amino Acid (BCAA) supplementation on O2 uptake kinetics and the time to exhaustion in trained women.  Methods In this quasi-experimental study with pre-test/post-test design, participants were 20 trained women (Mean±SD age, 21.3±0.5 years). They were randomly assigned into two groups of BCAA (received 45mg/kg/d BCA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 303 12  شماره 

صفحات  -

تاریخ انتشار 2012