Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring

نویسنده

  • Umberto Martínez-Peñas
چکیده

Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such distance is of interest in multishot network coding or in singleshot multi-network coding. To prove our result, we introduce new metrics defined by skew polynomials, which we call skew metrics, we prove that skew Reed-Solomon codes have maximum skew distance, and then we translate this scenario to linearized Reed-Solomon codes and the sum-rank metric. The theories of Reed-Solomon codes and Gabidulin codes are particular cases of our theory, and the sum-rank metric extends both the Hamming and rank metrics. We develop our theory over any division ring (commutative or non-commutative field). We also consider non-zero derivations, which give new maximum rank distance codes over infinite fields not considered before.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear codes using skew polynomials with automorphisms and derivations

In this work the definition of codes as modules over skew polynomial rings of automorphism type is generalized to skew polynomial rings, whose multiplication is defined using an automorphism and a derivation. This produces a more general class of codes which, in some cases, produce better distance bounds than module skew codes constructed only with an automorphism. Extending the approach of Gab...

متن کامل

Properties of subspace subcodes of optimum codes in rank metric

Maximum rank distance codes denoted MRD-codes are the equivalent in rank metric of MDS-codes. Given any integer $q$ power of a prime and any integer $n$ there is a family of MRD-codes of length $n$ over $\FF{q^n}$ having polynomial-time decoding algorithms. These codes can be seen as the analogs of Reed-Solomon codes (hereafter denoted RS-codes) for rank metric. In this paper their subspace sub...

متن کامل

Decoding of Block and Convolutional Codes in Rank Metric DISSERTATION

Rank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowadays...

متن کامل

Decoding of block and convolutional codes in rank metric

R ank-metric codes recently attract a lot of attention due to their possible application to network coding, cryptography, space-time coding and distributed storage. An optimal-cardinality algebraic code construction in rank metric was introduced some decades ago by Delsarte, Gabidulin and Roth. This Reed–Solomon-like code class is based on the evaluation of linearized polynomials and is nowaday...

متن کامل

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.03109  شماره 

صفحات  -

تاریخ انتشار 2017