A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge
نویسندگان
چکیده
Scripts representing common sense knowledge about stereotyped sequences of events have been shown to be a valuable resource for NLP applications. We present a hierarchical Bayesian model for unsupervised learning of script knowledge from crowdsourced descriptions of human activities. Events and constraints on event ordering are induced jointly in one unified framework. We use a statistical model over permutations which captures event ordering constraints in a more flexible way than previous approaches. In order to alleviate the sparsity problem caused by using relatively small datasets, we incorporate in our hierarchical model an informed prior on word distributions. The resulting model substantially outperforms a state-of-the-art method on the event ordering task.
منابع مشابه
Using Bayesian Classification for Aq-based Learning with Constructive Induction
To obtain potentially interesting patterns and relations from large, distributed, heterogeneous databases, it is essential to employ an intelligent and automated KDD (Knowledge Discovery in Databases) process. One of the most important methodologies is an integration of diverse learning strategies that cooperatively performs a variety of techniques and achieves high quality knowledge. AqBC is a...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملUnsupervised frame based Semantic Role Induction: application to French and English
This paper introduces a novel unsupervised approach to semantic role induction that uses a generative Bayesian model. To the best of our knowledge, it is the first model that jointly clusters syntactic verbs arguments into semantic roles, and also creates verbs classes according to the syntactic frames accepted by the verbs. The model is evaluated on French and English, outperforming, in both c...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملA Hierarchical Bayesian Model of Chords, Pitches, and Spectrograms for Multipitch Analysis
This paper presents a statistical multipitch analyzer that can simultaneously estimate pitches and chords (typical pitch combinations) from music audio signals in an unsupervised manner. A popular approach to multipitch analysis is to perform nonnegative matrix factorization (NMF) for estimating the temporal activations of semitone-level pitches and then execute thresholding for making a pianor...
متن کامل