A Framework for Discriminative Rule Selection in Hierarchical Moses
نویسندگان
چکیده
Training discriminative rule selection models is usually expensive because of the very large size of the hierarchical grammar. Previous approaches reduced the training costs either by (i) using models that are local to the source side of the rules or (ii) by heavily pruning out negative samples. Moreover, all previous evaluations were performed on small scale translation tasks, containing at most 250,000 sentence pairs. We propose two contributions to discriminative rule selection. First, we test previous approaches on two French-English translation tasks in domains for which only limited resources are available and show that they fail to improve translation quality. To improve on such tasks, we propose a rule selection model that is (i) global with rich label-dependent features (ii) trained with all available negative samples. Our global model yields significant improvements, up to 1 BLEU point, over previously proposed rule selection models. Second, we successfully scale rule selection models to large translation tasks but have so far failed to produce significant improvements in BLEU on these tasks.
منابع مشابه
Integrating a Discriminative Classifier into Phrase-based and Hierarchical Decoding
Current state-of-the-art statistical machine translation (SMT) relies on simple feature functionswhichmake independence assumptions at the level of phrases or hierarchical rules. However, it is well-known that discriminative models can benefit from rich features extracted from the source sentence context outside of the applied phrase or hierarchical rule, which is available at decoding time. We...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملRule Selection with Soft Syntactic Features for String-to-Tree Statistical Machine Translation
In syntax-based machine translation, rule selection is the task of choosing the correct target side of a translation rule among rules with the same source side. We define a discriminative rule selection model for systems that have syntactic annotation on the target language side (stringto-tree). This is a new and clean way to integrate soft source syntactic constraints into string-to-tree syste...
متن کاملA Dependency-Constrained Hierarchical Model with Moses
This paper presents a dependencyconstrained hierarchical machine translation model that uses Moses open-source toolkit for rule extraction and decoding. Experiments are carried out for the German-English language pair in both directions for projective and non-projective dependencies. We examine effects on SCFG size and automatic evaluation results when constraints are applied with respect to pr...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کامل