Affine Cohomology Classes for Filiform Lie Algebras

نویسنده

  • DIETRICH BURDE
چکیده

We classify the cohomology spaces H(g,K) for all filiform nilpotent Lie algebras of dimension n ≤ 11 over K and for certain classes of algebras of dimension n ≥ 12. The result is applied to the determination of affine cohomology classes [ω] ∈ H(g,K). We prove the general result that the existence of an affine cohomology class implies an affine structure of canonical type on g, hence a canonical left-invariant affine structure on the corresponding nilpotent Lie group. For certain filiform algebras the absence of an affine cohomology class implies the nonexistence of any affine structure. Of particular interest are algebras g with minimal Betti numbers b1(g) = b2(g) = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristically Nilpotent Lie Algebras and Symplectic Structures

We study symplectic structures on characteristically nilpotent Lie algebras (CNLAs) by computing the cohomology space H(g, k) for certain Lie algebras g. Among these Lie algebras are filiform CNLAs of dimension n ≤ 14. It turns out that there are many examples of CNLAs which admit a symplectic structure. A generalization of a sympletic structure is an affine structure on a Lie algebra.

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Non Complete Affine Connections on Filiform Lie Algebras

We give a example of non nilpotent faithful representation of a filiform Lie algebra. This gives one counter-example of the conjecture saying that every affine connection on a filiform Lie group is complete. 1. Affine connection on a nilpotent Lie algebra 1.1. Affine connection on nilpotent Lie algebras. Definition 1. Let g be a n-dimensional Lie algebra over R. It is called affine if there is ...

متن کامل

Affine structures on filiform Lie algebras

The aim of this note is to prove that every non characteristically nilpotent filiform algebra is provided with an affine structure. We generalize this result to the class of nilptent algebras whose derived algebra admits non singular derivation.

متن کامل

Cohomology of Graded Lie Algebras of Maximal Class

It was shown by A. Fialowski that an arbitrary infinite-dimensional N-graded ”filiform type” Lie algebra g= ⊕ ∞ i=1 gi with one-dimensional homogeneous components gi such that [g1, gi] = gi+1,∀i ≥ 2 over a field of zero characteristic is isomorphic to one (and only one) Lie algebra from three given ones: m0, m2, L1, where the Lie algebras m0 and m2 are defined by their structure relations: m0: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006