A Compact Formula for Rotations as Spin Matrix Polynomials
نویسندگان
چکیده
Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. The simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
منابع مشابه
A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملBernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملSimplification of the Spectral Analysis of the Volume Operator in Loop Quantum Gravity
The Volume Operator plays a crucial role in the definition of the quantum dynamics of Loop Quantum Gravity (LQG). Efficient calculations for dynamical problems of LQG can therefore be performed only if one has sufficient control over the volume spectrum. While closed formulas for the matrix elements are currently available in the literature, these are complicated polynomials in 6j symbols which...
متن کاملSome New Matrix Formulas Related to Hermite Matrix Polynomials Theory
In this paper an integral representation for the Hermite matrix polynomials is given. By means of the exact computation of certain matrix integrals and the integral representation of Hermite matrix polynomials, a formula for the generating function of the product of Her-mite matrix polynomials is obtained. Both the integral representation of the Hermite matrix polynomials and the formula for th...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کامل