A Concise Guide to Complex Hadamard Matrices

نویسندگان

  • Wojciech Tadej
  • Karol Zyczkowski
چکیده

Complex Hadamard matrices, consisting of unimodular entries with arbitrary phases, play an important role in the theory of quantum information. We review basic properties of complex Hadamard matrices and present a catalogue of inequivalent cases known for the dimensions N = 2, . . . , 16. In particular, we explicitly write down some families of complex Hadamard matrices for N = 12, 14 and 16, which we could not find in the existing literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Hadamard Matrices from Sylvester Inverse Orthogonal Matrices

A novel method to obtain parameterizations of complex inverse orthogonal matrices is provided. These matrices are natural generalizations of complex Hadamard matrices which depend on non zero complex parameters. The method we use is via doubling the size of inverse complex conference matrices. When the free parameters take values on the unit circle the inverse orthogonal matrices transform into...

متن کامل

The Quaternary Complex Hadamard Conjecture of order 2 n

ABSTRACT: In this paper, a complete construction of quaternary complex Hadamard matrices of order 2 n is obtained using the method of Sylvester construction and Williamson construction. Williamson construction has been generalized to obtain any kind of Hadamard matrices (Complex or Real Numbers). Non-equivalent family of Hadamard Matrices can be obtained using the Generalized Williamson constru...

متن کامل

A note on the existence of BH(19, 6) matrices

In this note we utilize a non-trivial block approach due to M. Petrescu to exhibit a Butson-type complex Hadamard matrix of order 19, composed of sixth roots of unity. 1 A new Butson-type complex Hadamard matrix A complex Hadamard matrix H is an n × n complex matrix with unimodular entries such that HH∗ = nIn, where ∗ denotes the Hermitian adjoint and In is the identity matrix of order n. Throu...

متن کامل

Complex Hadamard Matrices and Combinatorial Structures

Forty years ago, Goethals and Seidel showed that if the adjacency algebra of a strongly regular graph X contains a Hadamard matrix then X is of Latin square type or of negative Latin square type [8]. We extend their result to complex Hadamard matrices and find only three additional families of parameters for which the strongly regular graphs have complex Hadamard matrices in their adjacency alg...

متن کامل

Trades in complex Hadamard matrices

A trade in a complex Hadamard matrix is a set of entries which can be changed to obtain a different complex Hadamard matrix. We show that in a real Hadamard matrix of order n all trades contain at least n entries. We call a trade rectangular if it consists of a submatrix that can be multiplied by some scalar c 6= 1 to obtain another complex Hadamard matrix. We give a characterisation of rectang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Open Syst. Inform. Dynam.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2006