Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice.
نویسندگان
چکیده
BACKGROUND Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current research was directed to investigate the role of melatonin in preventing the gradual decrease in the response to L-dopa in MPTP-induced parkinsonism in mice. METHODS Eighty four male Swiss mice were divided into seven groups. Group I is the saline group. The other six groups were injected with MPTP (20 mg/kg/2 h). Group II is the MPTP control group. Group III was treated with L-dopa/carbidopa (100/10 mg/kg, po). Group IV and V were treated with melatonin (5 or 10 mg/kg, po), respectively. Group VI and VII received L-dopa/carbidopa in combination with melatonin in the same above-mentioned doses, respectively. RESULTS Results showed that MPTP-treated mice exhibited low striatal dopamine level accompanied by motor impairment and increased oxidative stress. Treatment with L-dopa improved the motor performance of mice. Addition of melatonin to L-dopa therapy improved the motor response to L-dopa and increased striatal dopamine level. This combination reduced lipid peroxidation, ameliorated reduced glutathione and improved antioxidant enzyme activities (p ≤ 0.05). CONCLUSIONS Overall, our study suggests that the antioxidant potential of melatonin makes it a promising candidate to L-dopa in treating Parkinson's disease.
منابع مشابه
Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys.
The quantitative 2-deoxy[14C]glucose autoradiographic method was used to map the distribution of alterations in local cerebral glucose utilization that accompanies clinically effective chronic L-dopa therapy of rhesus monkeys made parkinsonian by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This pattern of changes was compared to the effects of a similar treatment ...
متن کاملPain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
BACKGROUND Pain is the most prominent non-motor symptom observed in patients with Parkinson's disease (PD). However, the mechanisms underlying the generation of pain in PD have not been well studied. We used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD to analyze the relationship between pain sensory abnormalities and the degeneration of dopaminergic neurons. ...
متن کاملReduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease.
Long-term motor complications of dopamine replacement, such as L-DOPA-induced dyskinesia (LID) and reduced quality of L-DOPA action, remain obstacles in the treatment of Parkinson's disease. Dysfunctional glutamatergic neurotransmitter systems have been observed in both the untreated parkinsonian and dyskinetic states and represent novel targets for treatment. Here, we assess the pharmacokineti...
متن کاملMetabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys.
Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(...
متن کاملBlockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys.
Drugs acting at cannabinoid type 1 receptors (CB1) have modulatory effects on glutamate and GABA neurotransmission in basal ganglia; thus, they potentially affect motor behavior in the parkinsonian setting. Preclinical trials with diverse cannabinoid agents have shown varied results, and the precise effects of blocking cannabinoid CB1 receptors remain uncertain. We tested behavioral effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmacological reports : PR
دوره 65 5 شماره
صفحات -
تاریخ انتشار 2013