Rolling and Spinning Friction Characterization of Fine Particles using Lateral Force Microscopy based Contact Pushing

نویسندگان

  • BILSAY SÜMER
  • METIN SITTI
چکیده

Here, we have utilized Lateral Force Microscopy (LFM) based mechanical pushing of micro/nano-objects to study adhesion and friction characterization at the micro/nanoscale. Continuum micro/nano-friction models for particle rolling, spinning and sliding cases are discussed for general particle-substrate interfaces. A rolling resistance model using the Double-Hertz model is devoloped for such general interfaces. Using the friction models, the effect of work of adhesion, effective Young’s modulus, and contact radius at the particle-substrate interface are studied in detail. Combining friction models with experimental particle pushing vertical and lateral force data, the critical frictional interface parameters such as critical rolling distance and the interfacial shear strength are measured for a polystyrene particle and glass substrate interface. Results show that the critical rolling distance varies with the particle radius, and it is measured to be 42 nm, 84 nm, and 128 nm on average for 5 μm, 10 μm, and 15 μm radius particles, respectively. Next, using the particle spinning experimental data, the interfacial shear strength of the particle-substrate interface is measured as 9-15 MPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"Dynamic Modes of Nano-particle Manipulation"

In this paper, dynamic behavior of nanoparticle motion during nanoprobe-based manipulation is investigated. Pushing, pulling or picking manipulation of the particles results in different behavior of rolling, sliding, sticking, or rotation. For a given point of contact of the nanoprobe tip on the particle, nanoprobe load magnitude and direction and critical frictional forces are obtained in all ...

متن کامل

Dynamic Behavior and Simulation of Nanoparticle Sliding during Nanoprobe-based Positioning

In this paper, the behavior of nanoparticles, manipulated by an atomic force microscope nanoprobe, is investigated. Manipulation by pushing, pulling or picking nanoparticles can result in rolling, sliding, sticking, or rotation behavior. The dynamic simulation of the nanoparticle manipulation, using atomic force microscope (AFM), is performed. According to the dynamics of the system, the AFM pu...

متن کامل

Analysis of Rolling Process for Clad Sheet Using the Modified Slab Method

In this paper, an analytical model based on Modified Slab Method is presented for rolling of clad sheet or double-layers in which the two layers are bounded prior to rolling. This model considers the general case of asymmetrical rolling due to unequal &#10surface speed, different contact friction, roll diameters, flow stress, and thickness ratios of the two layers. Using this model, rolling par...

متن کامل

Analysis of Rolling Process for Clad Sheet Using the Modified Slab Method

In this paper, an analytical model based on Modified Slab Method is presented for rolling of clad sheet or double-layers in which the two layers are bounded prior to rolling. This model considers the general case of asymmetrical rolling due to unequal surface speed, different contact friction, roll diameters, flow stress, and thickness ratios of the two layers. Using this model, rolling param...

متن کامل

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007