Mutant Screen Distinguishes between Residues Necessary for Light-Signal Perception and Signal Transfer by Phytochrome B

نویسندگان

  • Yoshito Oka
  • Tomonao Matsushita
  • Nobuyoshi Mochizuki
  • Peter H. Quail
  • Akira Nagatani
چکیده

The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

The bHLH transcription factor, Phytochrome Interacting Factor 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this inter...

متن کامل

Missense mutations define a restricted segment in the C-terminal domain of phytochrome A critical to its regulatory activity.

The phytochrome family of photoreceptors has dual molecular functions: photosensory, involving light signal perception, and regulatory, involving signal transfer to downstream transduction components. To define residues necessary specifically for the regulatory activity of phytochrome A (phyA), we undertook a genetic screen to identify Arabidopsis mutants producing wild-type levels of biologica...

متن کامل

poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein (photoreceptorysignal transduction)

The phytochrome family of informational photoreceptors has a central role in regulating lightresponsive gene expression, but the mechanism of intracellular signal transduction has remained elusive. In a genetic screen for T DNA-tagged Arabidopsis mutants affected in early signaling intermediates, we identified poc1 (photocurrent 1), which exhibits enhanced responsiveness to red light. This phen...

متن کامل

RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis.

Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessary for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic rever...

متن کامل

REDI 1s Necessary for Phytochrome B-Mediated Red Light-Specific Signal Transduction in Arabidopsis

Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessaty for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic rever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Genetics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008