Mv - Cycles and Mv - Polytopes in Type A

نویسنده

  • MIKHAIL KOGAN
چکیده

We study, in type A, the algebraic cycles (MV-cycles) discovered by I. Mirkovi´c and K. Vilonen [MV]. In particular, we partition the loop Grassmannian into smooth pieces such that the MV-cycles are their closures. We explicitly describe the points in each piece using the lattice model of the loop Grassmannian in type A. The partition is invariant under the action of the coweights and, up to this action, the pieces are parametrized by the Kostant parameter set. We compute the moment map images of MV-cycles (MV-polytopes) by identifying the vertices of each polytope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mv - Cycles and Mv - Polytopes in Type A

We study, in type A, the algebraic cycles (MV-cycles) discovered by I. Mirkovi´c and K. Vilonen [MV]. In particular, we partition the loop Grassmannian into smooth pieces such that the MV-cycles are their closures. We explicitly describe the points in each piece using the lattice model of the loop Grassmannian in type A. The partition is invariant under the action of the coweights and, up to th...

متن کامل

Mv-polytopes via Affine Buildings

For an algebraic group G, Anderson originally defined the notion of MV-polytopes in [And03], images of MV-cycles, defined in [MV07], under the moment map of the corresponding affine Grassmannian. It was shown by Kamnitzer in [Kam07] and [Kam05] that these polytopes can be described via tropical relations and give rise to a crystal structure on the set of MV-cycles. Another crystal structure can...

متن کامل

Mirkovic-vilonen Cycles and Polytopes

We give an explicit description of the Mirkovic-Vilonen cycles on the affine Grassmannian for arbitrary reductive groups. We also give a combinatorial characterization of the MV polytopes. We prove that a polytope is an MV polytope if and only if every 2-face of it is a rank 2 MV polytope.

متن کامل

The Crystal Structure on the Set of Mirković-vilonen Polytopes

In an earlier work, we proved that MV polytopes parameterize both Lusztig’s canonical basis and the Mirković-Vilonen cycles on the Affine Grassmannian. Each of these sets has a crystal structure (due to Kashiwara-Lusztig on the canonical basis side and due to Braverman-Finkelberg-Gaitsgory on the MV cycles side). We show that these two crystal structures agree. As an application, we consider a ...

متن کامل

Rank 2 Affine Mv Polytopes

We give a realization of the crystal B(−∞) for ̂ sl2 using decorated polygons. The construction and proof are combinatorial, making use of Kashiwara and Saito’s characterization of B(−∞), in terms of the ∗ involution. The polygons we use have combinatorial properties suggesting they are the ̂ sl2 analogues of the Mirković-Vilonen polytopes defined by Anderson and the third author in finite type. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003