UCP2 Regulates the Glucagon Response to Fasting and Starvation
نویسندگان
چکیده
Glucagon is important for maintaining euglycemia during fasting/starvation, and abnormal glucagon secretion is associated with type 1 and type 2 diabetes; however, the mechanisms of hypoglycemia-induced glucagon secretion are poorly understood. We previously demonstrated that global deletion of mitochondrial uncoupling protein 2 (UCP2(-/-)) in mice impaired glucagon secretion from isolated islets. Therefore, UCP2 may contribute to the regulation of hypoglycemia-induced glucagon secretion, which is supported by our current finding that UCP2 expression is increased in nutrient-deprived murine and human islets. Further to this, we created α-cell-specific UCP2 knockout (UCP2AKO) mice, which we used to demonstrate that blood glucose recovery in response to hypoglycemia is impaired owing to attenuated glucagon secretion. UCP2-deleted α-cells have higher levels of intracellular reactive oxygen species (ROS) due to enhanced mitochondrial coupling, which translated into defective stimulus/secretion coupling. The effects of UCP2 deletion were mimicked by the UCP2 inhibitor genipin on both murine and human islets and also by application of exogenous ROS, confirming that changes in oxidative status and electrical activity directly reduce glucagon secretion. Therefore, α-cell UCP2 deletion perturbs the fasting/hypoglycemic glucagon response and shows that UCP2 is necessary for normal α-cell glucose sensing and the maintenance of euglycemia.
منابع مشابه
Comment on: Allister et al. UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes 2013;62:1623–1633
Using a-cell–specific knockout of the mitochondrial uncoupling protein 2 (UCP2), Allister et al. (1) recently provided evidence for involvement of this protein in glucose regulation of glucagon release. This is an interesting and potentially important contribution with regard to the possible involvement of UCP2. However, the authors do not seem to notice that their data contradict the promoted ...
متن کاملUncoupling protein-2 modulates the lipid metabolic response to fasting in mice.
Uncoupling protein-2 (UCP2) regulates insulin secretion by controlling ATP levels in beta-cells. Although UCP2 deficiency improves glycemic control in mice, increased expression of UCP2 interferes with glucose-stimulated insulin secretion. These observations link UCP2 to beta-cell dysfunction in type 2 diabetes with a perplexing evolutionary role. We found higher residual serum insulin levels a...
متن کاملResponse to Comment on: Allister et al. UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes 2013;62:1623–1633
We thank Dr. Gylfe (1) for his interest in our work showing a role for uncoupling protein 2 (UCP2) in regulating a-cell glucagon secretion and suggesting that this is an interesting and potentially important finding. We agree that the role and mechanism of glucose sensing in a-cells is still highly controversial and that two opposing models are promoted in the literature. Our data suggests that...
متن کاملCell fasting: Cellular response and application of serum starvation
Humans suffer transient or persistent starvation due to a lack of food intake, either because of fasting, voluntary dieting, or due to the scarcity of available food. At the cellular level it is possible to possess pathological starvation during ischemia and solid tumors. Blood provides many nutrients to our cells, and researchers provide these nutrients to cells in culture in the form of en...
متن کاملUCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival.
In pancreatic beta-cells, uncoupling protein 2 (UCP2) influences mitochondrial oxidative phosphorylation and insulin secretion. Here, we show that alpha-cells express significantly higher levels of UCP2 than do beta-cells. Greater mitochondrial UCP2-related uncoupling was observed in alpha-cells compared with beta-cells and was accompanied by a lower oxidative phosphorylation efficiency (ATP/O)...
متن کامل