Weak Curvature Conditions and Functional Inequalities

نویسنده

  • JOHN LOTT
چکیده

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities, along with a Sobolev inequality. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM, together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonnegative N -Ricci curvature and has unique minimizing geodesics between almost all pairs of points then it satisfies DM, with constant 2 . The condition DM is preserved by measured Gromov-Hausdorff limits. We then prove a Sobolev inequality for measured length spaces with N -Ricci curvature bounded below by K > 0. Finally we derive a sharp global Poincaré inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Curvature Conditions and Poincaré Inequalities

Abstract. We give sufficient conditions for a measured length space (X, d, ν) to admit local and global Poincaré inequalities. We first introduce a condition DM on (X, d, ν), defined in terms of transport of measures. We show that DM , together with a doubling condition on ν, implies a scale-invariant local Poincaré inequality. We show that if (X, d, ν) has nonnegative N -Ricci curvature and ha...

متن کامل

RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM

Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...

متن کامل

Curvature and transport inequalities for Markov chains in discrete spaces

We study various transport-information inequalities under three di erent notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and Émery [4], the exponential curvature-dimension condition of Bauer et al. [6] and the coarse Ricci curvature of Ollivier [38]. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1 tran...

متن کامل

Functional Inequalities via Lyapunov Conditions

We review here some recent results by the authors, and various coauthors, on (weak,super) Poincaré inequalities, transportation-information inequalities or logarithmic Sobolev inequality via a quite simple and efficient technique: Lyapunov conditions.

متن کامل

Characterization of Pinched Ricci Curvature by Functional Inequalities

ABSTRACT. In this article, functional inequalities for diffusion semigroups on Riemannian manifolds (possibly with boundary) are established, which are equivalent to pinched Ricci curvature, along with gradient estimates, Lp-inequalities and log-Sobolev inequalities. These results are further extended to differential manifolds carrying geometric flows. As application, it is shown that they can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007