Multi-Layer Cross Domain Reasoning over Distributed Autonomous IoT Applications
نویسندگان
چکیده
Due to the rapid advancements in the sensor technologies and IoT, we are witnessing a rapid growth in the use of sensors and relevant IoT applications. A very large number of sensors and IoT devices are in place in our surroundings which keep sensing dynamic contextual information. A true potential of the wide-spread of IoT devices can only be realized by designing and deploying a large number of smart IoT applications which can provide insights on the data collected from IoT devices and support decision making by converting raw sensor data into actionable knowledge. However, the process of getting value from sensor data streams and converting these raw sensor values into actionable knowledge requires extensive efforts from IoT application developers and domain experts. In this paper, our main aim is to propose a multi-layer cross domain reasoning framework, which can support application developers, end-users and domain experts to automatically understand relevant events and extract actionable knowledge with minimal efforts. Our framework reduces the efforts required for IoT applications development (i) by supporting automated application code generation and access mechanisms using IoTSuite, (ii) by leveraging from Machine-to-Machine Measurement (M3) framework to exploit semantic technologies and domain knowledge, and (iii) by using automated sensor discovery and complex event processing of relevant events (ACEIS Middleware) at the multiple data processing layers and different stages of the IoT application development life cycle. In the essence, our framework supports the end-users and IoT application developers to design innovative IoT applications by reducing the programming efforts, by identifying relevant events and by suggesting potential actions based on complex event processing and reasoning for cross-domain IoT applications. TYPE OF PAPER AND
منابع مشابه
Scalable Oriented-Service Architecture for Heterogeneous and Ubiquitous IoT Domains
Internet of Things (IoT) grows quickly, and 50 billion of IoT devices will be interconnected by 2020. For the huge number of IoT devices, a high scalable discovery architecture is required to provide autonomous registration and look-up of IoT resources and services. The architecture should enable dynamic updates when new IoT devices are incorporated into Internet, and changes are made to the ex...
متن کاملA study of existing Ontologies in the IoT-domain
Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications...
متن کاملCHARIOT: A Holistic, Goal Driven Orchestration Solution for Resilient IoT Applications
An emerging trend in Internet of Things (IoT) applications is to move the computation (cyber) closer to the source of the data (physical). This paradigm is often referred to as edge computing. If edge resources are pooled together they can be used as decentralized shared resources for IoT applications, providing increased capacity to scale up computations and minimize end-to-end latency. Managi...
متن کاملCHARIOT: Goal-driven Orchestration Middleware for Resilient IoT Systems
An emerging trend in Internet of Things (IoT) applications is to move the computation (cyber) closer to the source of the data (physical). This paradigm is often referred to as edge computing. If edge resources are pooled together they can be used as decentralized shared resources for IoT applications, providing increased capacity to scale up computations and minimize end-to-end latency. Managi...
متن کاملA Distributed Ai Architecture Enabling Multi-agent Cooperation
additional knowledge are automatically generated and integrated for the use of the cooperative community. As a consequence ISs are transformed into Cooperative Agents. In the consultation mode, the Shell provides the means for user interaction with either a separated agent or a set of agents (a society of agents) pursuing an overall common goal. This paper describes the general principles of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- OJIOT
دوره 3 شماره
صفحات -
تاریخ انتشار 2017